Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Nucleic Acids Res ; 48(13): 7333-7344, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32496552

RESUMEN

Neutrophils release their intracellular content, DNA included, into the bloodstream to form neutrophil extracellular traps (NETs) that confine and kill circulating pathogens. The mechanosensitive adhesive blood protein, von Willebrand Factor (vWF), interacts with the extracellular DNA of NETs to potentially immobilize them during inflammatory and coagulatory conditions. Here, we elucidate the previously unknown molecular mechanism governing the DNA-vWF interaction by integrating atomistic, coarse-grained, and Brownian dynamics simulations, with thermophoresis, gel electrophoresis, fluorescence correlation spectroscopy (FCS), and microfluidic experiments. We demonstrate that, independently of its nucleotide sequence, double-stranded DNA binds to a specific helix of the vWF A1 domain, via three arginines. This interaction is attenuated by increasing the ionic strength. Our FCS and microfluidic measurements also highlight the key role shear-stress has in enabling this interaction. Our simulations attribute the previously-observed platelet-recruitment reduction and heparin-size modulation, upon establishment of DNA-vWF interactions, to indirect steric hindrance and partial overlap of the binding sites, respectively. Overall, we suggest electrostatics-guiding DNA to a specific protein binding site-as the main driving force defining DNA-vWF recognition. The molecular picture of a key shear-mediated DNA-protein interaction is provided here and it constitutes the basis for understanding NETs-mediated immune and hemostatic responses.


Asunto(s)
ADN/química , Simulación del Acoplamiento Molecular , Factor de von Willebrand/química , Sitios de Unión , ADN/metabolismo , Humanos , Simulación de Dinámica Molecular , Concentración Osmolar , Unión Proteica , Electricidad Estática , Factor de von Willebrand/metabolismo
3.
Clin J Pain ; 30(9): 739-43, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24281295

RESUMEN

INTRODUCTION: Pain diaries are important tools for clinical trials and optimal assay sensitivity of outcomes derived from these diaries is a worthwhile goal. Jensen and colleagues recently reported results suggesting that single-day diary-based outcomes could possibly be as psychometrically sound as outcomes based on taking the average of many diaries. MATERIALS AND METHODS: In this paper, we attempted to replicate those results with several diary data sets. RESULTS AND DISCUSSION: We come to a different conclusion than that advanced by Jensen and colleagues and conclude that their results were unusual in that very high test-retest reliability among days was found. With our 4 diary data sets we find that aggregating multiple diaries yields more reliable outcomes and improved sensitivity. We suggest that using single-day diaries will often lead to underpowered studies and that pretesting is advised before adopting single-day diaries. We also suggest that other researchers replicate these findings within their diary-based clinical trials.


Asunto(s)
Registros Médicos , Dimensión del Dolor/métodos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/fisiopatología , Ensayos Clínicos como Asunto , Femenino , Humanos , Estudios Observacionales como Asunto , Osteoartritis/fisiopatología , Dolor/diagnóstico , Dolor/fisiopatología , Psicometría , Reproducibilidad de los Resultados , Enfermedades Reumáticas/fisiopatología , Sensibilidad y Especificidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA