Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1422032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872930

RESUMEN

Lipid droplets (LDs) serve as intracellular compartments primarily dedicated to the storage of metabolic energy in the form of neutral lipids. The processes that regulate and control LD biogenesis are being studied extensively and are gaining significance due to their implications in major metabolic disorders, including type 2 diabetes and obesity. A protein of particular interest is Fat storage-Inducing Transmembrane 2 (FIT2), which affects the emergence step of LD biogenesis. Instead of properly emerging towards the cytosol, LDs in FIT2-deficient cells remain embedded within the membrane of the endoplasmic reticulum (ER). In vitro studies revealed the ability of FIT2 to bind both di- and triacylglycerol (DAG/TAG), key players in lipid storage, and its activity to cleave acyl-CoA. However, the translation of these in vitro functions to the observed embedding of LDs in FIT2 deficient cells remains to be established. To understand the role of FIT2 in vivo, we discuss the parameters that affect LD emergence. Our focus centers on the role that membrane curvature and surface tension play in LD emergence, as well as the impact that the lipid composition exerts on these key parameters. In addition, we discuss hypotheses on how FIT2 could function locally to modulate lipids at sites of LD emergence.

2.
J Biol Chem ; 299(12): 105384, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898398

RESUMEN

Perilipins (PLINs) constitute an evolutionarily conserved family of proteins that specifically associate with the surface of lipid droplets (LDs). These proteins function in LD biogenesis and lipolysis and help to stabilize the surface of LDs. PLINs are typically composed of three different protein domains. They share an N-terminal PAT domain of unknown structure and function, a central region containing 11-mer repeats that form amphipathic helices, and a C-terminal domain that adopts a 4-helix bundle structure. How exactly these three distinct domains contribute to PLIN function remains to be determined. Here, we show that the N-terminal PAT domain of PLIN3 binds diacylglycerol (DAG), the precursor to triacylglycerol, a major storage lipid of LDs. PLIN3 and its PAT domain alone bind liposomes with micromolar affinity and PLIN3 binds artificial LDs containing low concentrations of DAG with nanomolar affinity. The PAT domain of PLIN3 is predicted to adopt an amphipathic triangular shaped structure. In silico ligand docking indicates that DAG binds to one of the highly curved regions within this domain. A conserved aspartic acid residue in the PAT domain, E86, is predicted to interact with DAG, and we found that its substitution abrogates high affinity binding of DAG as well as DAG-stimulated association with liposome and artificial LDs. These results indicate that the PAT domain of PLINs harbor specific lipid-binding properties that are important for targeting these proteins to the surface of LDs and to ER membrane domains enriched in DAG to promote LD formation.


Asunto(s)
Diglicéridos , Perilipina-3 , Diglicéridos/metabolismo , Gotas Lipídicas/metabolismo , Lipólisis , Perilipina-1 , Perilipina-2/metabolismo , Perilipina-3/química , Perilipina-3/metabolismo , Dominios Proteicos , Proteínas/metabolismo , Humanos
3.
Ther Umsch ; 80(6): 280-283, 2023 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-37855532

RESUMEN

INTRODUCTION: Endocrinological or metabolic disorders often affect a wide variety of functions of the organism. This can also include an impairment of respiratory function. Diabetic ketoacidosis as a result of insulin deficiency is a typical metabolic acidosis, which the body tries to compensate by an increased exhalation of carbon dioxide. This leads to the classic picture of "Kussmaul" breathing. Due to the increased use of SGLT2 inhibitors, which can reduce the otherwise typical hyperglycemia and thus complicate diagnosis, the occurrence of diabetic ketoacidosis has remained an important differential diagnosis in recent years. Pathologies of the thyroid gland can lead to dyspnea not only by morphological changes, for example in the case of goiter (compression). Functional disorders must also be considered here. Both hypo- and hyperthyroidism affect the cardiovascular system in different ways and may ultimately lead to the clinical picture of dyspnea. If the corresponding entities are thought of, the laboratory diagnosis of the aforementioned metabolic/endocrinological disorders is then basically straightforward. Accordingly, knowledge of these disorders as a differential diagnosis of tachy- and dyspnea is important.


Asunto(s)
Acidosis , Cetoacidosis Diabética , Hiperglucemia , Humanos , Cetoacidosis Diabética/diagnóstico , Cetoacidosis Diabética/terapia , Cetoacidosis Diabética/complicaciones , Acidosis/complicaciones , Acidosis/diagnóstico , Hiperglucemia/complicaciones , Insulina , Disnea/diagnóstico , Disnea/etiología
4.
Methods Mol Biol ; 2704: 173-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37642844

RESUMEN

Determining the affinity and specificity of protein-lipid interactions is crucial for understanding the physiological function and mode of action of signaling lipids, including steroids. Here we describe a method that relies on microscale thermophoresis (MST) to monitor the binding of sterols and steroids to proteins. The protein of interest is expressed as a polyhistidine-tagged fusion in E. coli and purified by affinity chromatography on a nickel-based resin. The purified protein is then labeled with a fluorescent dye and incubated with a serial dilution of the lipid ligand. The protein-ligand interaction is monitored by MST, which detects the fraction of the protein bound to the ligand based on its altered mobility in a thermal gradient. A binding curve fitted to the measured data points is then used to calculate the corresponding dissociation constant.


Asunto(s)
Fitosteroles , Esteroles , Escherichia coli/genética , Ligandos , Esteroides
5.
Front Cell Dev Biol ; 11: 1116491, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465010

RESUMEN

Lipid droplets (LDs) serve as intracellular stores of energy-rich neutral lipids. LDs form at discrete sites in the endoplasmic reticulum (ER) and they remain closely associated with the ER during lipogenic growth and lipolytic consumption. Their hydrophobic neutral lipid core is covered by a monolayer of phospholipids, which harbors a specific set of proteins. This LD surface is coated and stabilized by perilipins, a family of soluble proteins that specifically target LDs from the cytosol. We have previously used chimeric fusion proteins between perilipins and integral ER membrane proteins to test whether proteins that are anchored to the ER bilayer could be dragged onto the LD monolayer. Expression of these chimeric proteins induces repositioning of the ER membrane around LDs. Here, we test the properties of membrane-anchored perilipins in cells that lack LDs. Unexpectedly, membrane-anchored perilipins induce expansion and vesiculation of the perinuclear membrane resulting in the formation of crescent-shaped membrane domains that harbor LD-like properties. These domains are stained by LD-specific lipophilic dyes, harbor LD marker proteins, and they transform into nascent LDs upon induction of neutral lipid synthesis. These ER domains are enriched in diacylglycerol (DAG) and in ER proteins that are important for early steps of LD biogenesis, including seipin and Pex30. Formation of the domains in vivo depends on DAG levels, and we show that perilipin 3 (PLIN3) binds to liposomes containing DAG in vitro. Taken together, these observations indicate that perilipin not only serve to stabilize the surface of mature LDs but that they are likely to exert a more active role in early steps of LD biogenesis at ER subdomains enriched in DAG, seipin, and neutral lipid biosynthetic enzymes.

6.
Mol Plant Pathol ; 24(6): 651-668, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36932700

RESUMEN

The pathogenesis-related (PR) proteins of plants have originally been identified as proteins that are strongly induced upon biotic and abiotic stress. These proteins fall into 17 distinct classes (PR1-PR17). The mode of action of most of these PR proteins has been well characterized, except for PR1, which belongs to a widespread superfamily of proteins that share a common CAP domain. Proteins of this family are not only expressed in plants but also in humans and in many different pathogens, including phytopathogenic nematodes and fungi. These proteins are associated with a diverse range of physiological functions. However, their precise mode of action has remained elusive. The importance of these proteins in immune defence is illustrated by the fact that PR1 overexpression in plants results in increased resistance against pathogens. However, PR1-like CAP proteins are also produced by pathogens and deletion of these genes results in reduced virulence, suggesting that CAP proteins can exert both defensive and offensive functions. Recent progress has revealed that plant PR1 is proteolytically cleaved to release a C-terminal CAPE1 peptide, which is sufficient to activate an immune response. The release of this signalling peptide is blocked by pathogenic effectors to evade immune defence. Moreover, plant PR1 forms complexes with other PR family members, including PR5, also known as thaumatin, and PR14, a lipid transfer protein, to enhance the host's immune response. Here, we discuss possible functions of PR1 proteins and their interactors, particularly in light of the fact that these proteins can bind lipids, which have important immune signalling functions.


Asunto(s)
Plantas , Proteínas , Humanos , Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Front Microbiol ; 14: 1309024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38328584

RESUMEN

The activation of fatty acids to their acyl-CoA derivatives is a crucial step for their integration into more complex lipids or their degradation via beta-oxidation. Yeast cells employ five distinct acyl-CoA synthases to facilitate this ATP-dependent activation of acyl chains. Notably, mutant cells that are deficient in two of these fatty acid-activating (FAA) enzymes, namely, Faa1 and Faa4, do not take up free fatty acids but rather export them out of the cell. This unique fatty acid export pathway depends on small, secreted pathogenesis-related yeast proteins (Pry). In this study, we investigate whether the expression of human fatty acid-binding proteins, including Albumin, fatty acid-binding protein 4 (Fabp4), and three distinct lipocalins (ApoD, Lcn1, and Obp2a), could promote fatty acid secretion in yeast. To optimize the expression and secretion of these proteins, we systematically examined various signal sequences in both low-copy and high-copy number plasmids. Our findings reveal that directing these fatty-acid binding proteins into the secretory pathway effectively promotes fatty acid secretion from a sensitized quadruple mutant model strain (faa1∆ faa4∆ pry1∆ pry3∆). Furthermore, the level of fatty acid secretion exhibited a positive correlation with the efficiency of protein secretion. Importantly, the expression of all human lipid-binding proteins rescued Pry-dependent fatty acid secretion, resulting in the secretion of both long-chain saturated and unsaturated fatty acids. These results not only affirm the in vitro binding capabilities of lipocalins to fatty acids but also present a novel avenue for enhancing the secretion of valuable lipidic compounds. Given the growing interest in utilizing yeast as a cellular factory for producing poorly soluble compounds and the potential of lipocalins as platforms for engineering substrate-binding specificity, our model is considered as a powerful tool for promoting the secretion of high-value lipid-based molecules.

8.
FEMS Yeast Res ; 22(1)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36398741

RESUMEN

Saccharomyces cerevisiae is the model organism to most yeast researchers, and information obtained from its physiology is generally extrapolated to other yeasts. Studies on fatty acid transport in S. cerevisiae are based on the expression of both native fatty acid export genes as well as heterologous proteins. Starmerella bombicola, on the other hand, is an oleaginous yeast of industrial relevance but its fatty acid transport mechanisms are unknown. In this study, we attempt to use existing knowledge from S. cerevisiae to study fatty acid transport in S. bombicola, but the obtained results differ from those observed in S. cerevisiae. First, we observed that deletion of SbPRY1 in S. bombicola leads to higher fatty acid export, the opposite effect to the one previously observed for the Pry homologues in S. cerevisiae. Second, following reports that human FATP1 could export fatty acids and alcohols in S. cerevisiae, we expressed FATP1 in a fatty acid-accumulating S. bombicola strain. However, FATP1 reduced fatty acid export in S. bombicola, most likely due to its acyl-CoA synthetase activity. These results not only advance knowledge on fatty acid physiology of S. bombicola, but also improve our understanding of S. cerevisiae and its limitations as a model organism.


Asunto(s)
Saccharomyces cerevisiae , Saccharomycetales , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transporte Biológico , Ácidos Grasos/metabolismo
9.
Nitric Oxide ; 128: 12-24, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973674

RESUMEN

Epigallocatechin gallate (EGCG) is the main bioactive component of green tea. Through screening of a small library of natural compounds, we discovered that EGCG inhibits cystathionine ß-synthase (CBS), a major H2S-generating enzyme. Here we characterize EGCG's mechanism of action in the context of CBS-derived H2S production. In the current project, biochemical, pharmacological and cell biology approaches were used to characterize the effect of EGCG on CBS in cellular models of cancer and Down syndrome (DS). The results show that EGCG binds to CBS and inhibits H2S-producing CBS activity almost 30-times more efficiently than the canonical cystathionine formation (IC50 0.12 versus 3.3 µM). Through screening structural analogs and building blocks, we identified that gallate moiety of EGCG represents the pharmacophore responsible for CBS inhibition. EGCG is a mixed-mode, CBS-specific inhibitor with no effect on the other two major enzymatic sources of H2S, CSE and 3-MST. Unlike the prototypical CBS inhibitor aminooxyacetate, EGCG does not bind the catalytic cofactor of CBS pyridoxal-5'-phosphate. Molecular modeling suggests that EGCG blocks a substrate access channel to pyridoxal-5'-phosphate. EGCG inhibits cellular H2S production in HCT-116 colon cancer cells and in DS fibroblasts. It also exerts effects that are consistent with the functional role of CBS in these cells: in HCT-116 cells it decreases, while in DS cells it improves viability and proliferation. In conclusion, EGCG is a potent inhibitor of CBS-derived H2S production. This effect may contribute to its pharmacological effects in various pathophysiological conditions.


Asunto(s)
Cistationina betasintasa , Sulfuro de Hidrógeno , Catequina/análogos & derivados , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Fosfatos , Piridoxal , Relación Estructura-Actividad
10.
Praxis (Bern 1994) ; 111(6): 345-349, 2022 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-35473327

RESUMEN

IPED Use in Recreational Sports Abstract. Abtract: IPED consumers seek medical advice when uncertain as to their use. Due to shame or fear of stigmatization IPED consumers are often reluctant to talk about their drug use; they fear prejudice and a lack of experience when caring for this specific patient group. In order to strengthen trust, a non-judgmental, non-stigmatizing and supportive attitude is essential. The interaction should primarily lead to an understanding of why AAS are being used, what the patient's concerns are, and why medical help is being sought, without judgment or condemnation of the behavior. If no motivation to abstain from drug use is found during the consultation, harm reduction should be sought and the consequences of use addressed. Regular talks and active harm reduction can increase the confidence in evidence-based treatment to achieve personal motivation to abstain under medical supervision.


Asunto(s)
Deportes , Miedo , Humanos , Motivación
11.
Praxis (Bern 1994) ; 111(6): e345-e349, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35473330

RESUMEN

IPED consumers seek medical advice when uncertain as to their use. Due to shame or fear of stigmatization IPED consumers are often reluctant to talk about their drug use; they fear prejudice and a lack of experience when caring for this specific patient group. In order to strengthen trust, a non-judgmental, non-stigmatizing and supportive attitude is essential. The interaction should primarily lead to an understanding of why AAS are being used, what the patient's concerns are, and why medical help is being sought, without judgment or condemnation of the behavior. If no motivation to abstain from drug use is found during the consultation, harm reduction should be sought and the consequences of use addressed. Regular talks and active harm reduction can increase the confidence in evidence-based treatment to achieve personal motivation to abstain under medical supervision.


Asunto(s)
Deportes , Trastornos Relacionados con Sustancias , Miedo , Humanos , Motivación
12.
Curr Opin Cell Biol ; 75: 102070, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35306312

RESUMEN

Most cells store metabolic energy in lipid droplets (LDs). LDs are composed of a hydrophobic core, covered by a phospholipid monolayer, and functionalized by a specific set of proteins. Formation of LDs takes place in the endoplasmic reticulum (ER), where neutral lipid biosynthetic enzymes are located. Recent evidence indicate that this process is confined to specific ER subdomains, where proteins meet to initiate LD assembly. The lipodystrophy protein Seipin, is emerging as a major coordinator of LD biogenesis. Seipin forms a large oligomeric toroidal structure, which traps neutral lipids to promote LD nucleation. Here, we discuss the role of LD biogenesis factors that associate with Seipin to assemble functional LDs.


Asunto(s)
Retículo Endoplásmico , Gotas Lipídicas , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo
13.
J Biol Chem ; 298(3): 101600, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063506

RESUMEN

Members of the CAP protein superfamily are present in all kingdoms of life and have been implicated in many different processes, including pathogen defense, immune evasion, sperm maturation, and cancer progression. Most CAP proteins are secreted glycoproteins and share a unique conserved αßα sandwich fold. The precise mode of action of this class of proteins, however, has remained elusive. Saccharomyces cerevisiae has three CAP family members, termed pathogen related in yeast (Pry). We have previously shown that Pry1 and Pry2 export sterols in vivo and that they bind sterols in vitro. This sterol binding and export function of yeast Pry proteins is conserved in the mammalian CRISP proteins and other CAP superfamily members. CRISP3 is an abundant protein of the human seminal plasma and interacts with prostate secretory protein of 94 amino acids (PSP94), another major protein component in the seminal plasma. Here we examine whether the interaction between CRISP proteins and PSP94 affects the sterol binding function of CAP family members. We show that coexpression of PSP94 with CAP proteins in yeast abolished their sterol export function and the interaction between PSP94 and CAP proteins inhibits sterol binding in vitro. In addition, mutations that affect the formation of the PSP94-CRISP2 heteromeric complex restore sterol binding. Of interest, we found the interaction of PSP94 with CRISP2 is sensitive to high calcium concentrations. The observation that PSP94 modulates the sterol binding function of CRISP2 in a calcium-dependent manner has potential implications for the role of PSP94 and CRISP2 in prostate physiology and progression of prostate cancer.


Asunto(s)
Moléculas de Adhesión Celular , Proteínas de Secreción Prostática , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Esteroles , Animales , Calcio/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Humanos , Masculino , Mamíferos/metabolismo , Próstata/metabolismo , Proteínas de Secreción Prostática/genética , Proteínas de Secreción Prostática/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteroles/antagonistas & inhibidores , Esteroles/metabolismo
14.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34373922

RESUMEN

Lipid droplets (LDs) are globular intracellular structures dedicated to the storage of neutral lipids. They are closely associated with the endoplasmic reticulum (ER) and are delineated by a monolayer of phospholipids that is continuous with the cytoplasmic leaflet of the ER membrane. LDs contain a specific set of proteins, but how these proteins are targeted to the LD surface is not fully understood. Here, we devised a yeast mating-based microscopic readout to monitor the transfer of LD proteins upon zygote formation. The results of this analysis indicate that ER fusion between mating partners is required for transfer of LD proteins and that this transfer is continuous, bidirectional and affects most LDs simultaneously. These observations suggest that LDs do not fuse upon mating of yeast cells, but that they form a network that is interconnected through the ER membrane. Consistent with this, ER-localized LD proteins rapidly move onto LDs of a mating partner and this protein transfer is affected by seipin, a protein important for proper LD biogenesis and the functional connection of LDs with the ER membrane.


Asunto(s)
Gotas Lipídicas , Proteínas de Saccharomyces cerevisiae , Retículo Endoplásmico , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34028531

RESUMEN

Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins.


Asunto(s)
Gotas Lipídicas , Proteínas de la Membrana , Animales , Retículo Endoplásmico/genética , Proteínas de la Membrana/genética , Fosfolípidos , Saccharomyces cerevisiae
16.
Nanomaterials (Basel) ; 11(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34443832

RESUMEN

DNA nanotechnology offers to build nanoscale structures with defined chemistries to precisely position biomolecules or drugs for selective cell targeting and drug delivery. Owing to the negatively charged nature of DNA, for delivery purposes, DNA is frequently conjugated with hydrophobic moieties, positively charged polymers/peptides and cell surface receptor-recognizing molecules or antibodies. Here, we designed and assembled cholesterol-modified DNA nanotubes to interact with cancer cells and conjugated them with cytochrome c to induce cancer cell apoptosis. By flow cytometry and confocal microscopy, we observed that DNA nanotubes efficiently bound to the plasma membrane as a function of the number of conjugated cholesterol moieties. The complex was taken up by the cells and localized to the endosomal compartment. Cholesterol-modified DNA nanotubes, but not unmodified ones, increased membrane permeability, caspase activation and cell death. Irreversible inhibition of caspase activity with a caspase inhibitor, however, only partially prevented cell death. Cytochrome c-conjugated DNA nanotubes were also efficiently taken up but did not increase the rate of cell death. These results demonstrate that cholesterol-modified DNA nanotubes induce cancer cell death associated with increased cell membrane permeability and are only partially dependent on caspase activity, consistent with a combined form of apoptotic and necrotic cell death. DNA nanotubes may be further developed as primary cytotoxic agents, or drug delivery vehicles, through cholesterol-mediated cellular membrane interactions and uptake.

17.
J Cell Biol ; 220(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34323918

RESUMEN

Lipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis. In silico and in vitro experiments reveal that retinyl esters have the intrinsic propensity to sequester and nucleate in lipid bilayers. Production of retinyl esters in mammalian and yeast cells that do not normally produce retinyl esters causes the formation of lipid droplets, even in a yeast strain that produces only retinyl esters and no other neutral lipids. Seipin does not determine the size or biogenesis site of lipid droplets composed of only retinyl esters or steryl esters. These findings indicate that the role of seipin in lipid droplet biogenesis depends on the type of neutral lipid stored in forming droplets.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Gotas Lipídicas/metabolismo , Ésteres de Retinilo/metabolismo , Triglicéridos/metabolismo , Animales , Células Cultivadas , Cricetulus , Subunidades gamma de la Proteína de Unión al GTP/deficiencia , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
18.
Front Cell Dev Biol ; 9: 650186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898445

RESUMEN

Lipid droplets (LDs) constitute compartments dedicated to the storage of metabolic energy in the form of neutral lipids. LDs originate from the endoplasmic reticulum (ER) with which they maintain close contact throughout their life cycle. These ER-LD junctions facilitate the exchange of both proteins and lipids between these two compartments. In recent years, proteins that are important for the proper formation of LDs and localize to ER-LD junctions have been identified. This junction is unique as it is generally believed to invoke a transition from the ER bilayer membrane to a lipid monolayer that delineates LDs. Proper formation of this junction requires the ordered assembly of proteins and lipids at specialized ER subdomains. Without such a well-ordered assembly of LD biogenesis factors, neutral lipids are synthesized throughout the ER membrane, resulting in the formation of aberrant LDs. Such ectopically formed LDs impact ER and lipid homeostasis, resulting in different types of lipid storage diseases. In response to starvation, the ER-LD junction recruits factors that tether the vacuole to these junctions to facilitate LD degradation. In addition, LDs maintain close contacts with peroxisomes and mitochondria for metabolic channeling of the released fatty acids toward beta-oxidation. In this review, we discuss the function of different components that ensure proper functioning of LD contact sites, their role in lipogenesis and lipolysis, and their relation to lipid storage diseases.

19.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33674387

RESUMEN

Lipid droplets (LDs) are intracellular organelles responsible for lipid storage, and they emerge from the endoplasmic reticulum (ER) upon the accumulation of neutral lipids, mostly triglycerides (TG), between the two leaflets of the ER membrane. LD biogenesis takes place at ER sites that are marked by the protein seipin, which subsequently recruits additional proteins to catalyze LD formation. Deletion of seipin, however, does not abolish LD biogenesis, and its precise role in controlling LD assembly remains unclear. Here, we use molecular dynamics simulations to investigate the molecular mechanism through which seipin promotes LD formation. We find that seipin clusters TG, as well as its precursor diacylglycerol, inside its unconventional ring-like oligomeric structure and that both its luminal and transmembrane regions contribute to this process. This mechanism is abolished upon mutations of polar residues involved in protein-TG interactions into hydrophobic residues. Our results suggest that seipin remodels the membrane of specific ER sites to prime them for LD biogenesis.


Asunto(s)
Diglicéridos , Subunidades gamma de la Proteína de Unión al GTP , Gotas Lipídicas , Simulación de Dinámica Molecular , Triglicéridos , Línea Celular , Diglicéridos/química , Diglicéridos/genética , Diglicéridos/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Humanos , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Triglicéridos/química , Triglicéridos/genética , Triglicéridos/metabolismo
20.
Elife ; 102021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522484

RESUMEN

Cells store energy in the form of neutral lipids (NLs) packaged into micrometer-sized organelles named lipid droplets (LDs). These structures emerge from the endoplasmic reticulum (ER) at sites marked by the protein seipin, but the mechanisms regulating their biogenesis remain poorly understood. Using a combination of molecular simulations, yeast genetics, and fluorescence microscopy, we show that interactions between lipids' acyl-chains modulate the propensity of NLs to be stored in LDs, in turn preventing or promoting their accumulation in the ER membrane. Our data suggest that diacylglycerol, which is enriched at sites of LD formation, promotes the packaging of NLs into LDs, together with ER-abundant lipids, such as phosphatidylethanolamine. On the opposite end, short and saturated acyl-chains antagonize fat storage in LDs and promote accumulation of NLs in the ER. Our results provide a new conceptual understanding of LD biogenesis in the context of ER homeostasis and function.


Asunto(s)
Retículo Endoplásmico/fisiología , Gotas Lipídicas/fisiología , Triglicéridos/metabolismo , Diglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Microscopía Fluorescente , Simulación de Dinámica Molecular , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...