Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
HNO ; 70(5): 380-388, 2022 May.
Artículo en Alemán | MEDLINE | ID: mdl-35420312

RESUMEN

BACKGROUND: A multitude of vascular anomalies exist and can lead to severe complications. Treatment can be complex. OBJECTIVE: This overview aims to provide important information for the management of vascular anomalies. MATERIALS AND METHODS: In addition to current literature, experiences from the interdisciplinary Vascular Anomalies Center in Marburg were included in this review. RESULTS: Hemangiomas at critical sites, arteriovenous malformations, and vascular anomalies of uncertain etiology require particular attention. CONCLUSION: Self-help and support groups, specialized interdisciplinary centers, scientific medical societies, and networks can provide help for the treatment of vascular anomalies.


Asunto(s)
Malformaciones Arteriovenosas , Hemangioma , Malformaciones Vasculares , Malformaciones Arteriovenosas/diagnóstico , Malformaciones Arteriovenosas/terapia , Hemangioma/diagnóstico , Hemangioma/terapia , Humanos , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/terapia
2.
Sci Rep ; 12(1): 4795, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314737

RESUMEN

Endothelial cells (ECs) lining blood vessels are exposed to mechanical forces, such as shear stress. These forces control many aspects of EC biology, including vascular tone, cell migration and proliferation. Despite a good understanding of the genes responding to shear stress, our insight into the transcriptional regulation of these genes is much more limited. Here, we set out to study alterations in the chromatin landscape of human umbilical vein endothelial cells (HUVEC) exposed to laminar shear stress. To do so, we performed ChIP-Seq for H3K27 acetylation, indicative of active enhancer elements and ATAC-Seq to mark regions of open chromatin in addition to RNA-Seq on HUVEC exposed to 6 h of laminar shear stress. Our results show a correlation of gained and lost enhancers with up and downregulated genes, respectively. DNA motif analysis revealed an over-representation of KLF transcription factor (TF) binding sites in gained enhancers, while lost enhancers contained more ETV/ETS motifs. We validated a subset of flow responsive enhancers using luciferase-based reporter constructs and CRISPR-Cas9 mediated genome editing. Lastly, we characterized the shear stress response in ECs of zebrafish embryos using RNA-Seq. Our results lay the groundwork for the exploration of shear stress responsive elements in controlling EC biology.


Asunto(s)
Cromatina , Pez Cebra , Animales , Sitios de Unión , Células Cultivadas , Cromatina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Estrés Mecánico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Anat Sci Educ ; 15(3): 447-463, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35274467

RESUMEN

The various psychological dimensions of professional identity formation (PIF) are an important aspect of the study course for undergraduate medical students. Anatomical learning environments have been repeatedly shown to play a critical role in forming such an identity; however, relevance of PIF during sonoanatomical training remains underexplored. At the end of their basic anatomy studies, third-semester medical students took part in a four-day block course on anatomy and imaging. Anatomical content was revised in small groups using peer teaching and imaging methods, including one hour of hands-on sonoanatomy sessions each day. On-site sonoanatomy was identified as an excellent format to support students' transition from the pre-clinical to clinical phase as medical experts-to-be. Students enjoyed practical exercises and the clinical input, which increased their interest in the medical profession and their academic studies. This study further examined the effects of the transition into an online-only format, necessitated by the current Covid-19 pandemic. A comparison was made between the quantitative and qualitative evaluation data, and the written results of examinations of several on-site (n = 1096, mean age = 22.4 years ± 2.18), and online-only cohorts (n = 230, mean age = 22.6 years ± 2.21). The online-only transition led to a reduction of all PIF-related variables measured, losing identity-related variables, increasing students' stress levels, and reducing their long-term academic performance. Together, this study demonstrates presence of PIF in undergraduate sonoanatomy teaching, and cautions against the uncritical online-only substitution of hands-on learning environments.


Asunto(s)
Anatomía , COVID-19 , Estudiantes de Medicina , Adulto , Anatomía/educación , Humanos , Aprendizaje , Pandemias , Estudiantes de Medicina/psicología , Adulto Joven
4.
Cell Mol Life Sci ; 79(2): 88, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35067832

RESUMEN

Junctional adhesion molecule (JAM)-A is a cell adhesion receptor localized at epithelial cell-cell contacts with enrichment at the tight junctions. Its role during cell-cell contact formation and epithelial barrier formation has intensively been studied. In contrast, its role during collective cell migration is largely unexplored. Here, we show that JAM-A regulates collective cell migration of polarized epithelial cells. Depletion of JAM-A in MDCK cells enhances the motility of singly migrating cells but reduces cell motility of cells embedded in a collective by impairing the dynamics of cryptic lamellipodia formation. This activity of JAM-A is observed in cells grown on laminin and collagen-I but not on fibronectin or vitronectin. Accordingly, we find that JAM-A exists in a complex with the laminin- and collagen-I-binding α3ß1 integrin. We also find that JAM-A interacts with tetraspanins CD151 and CD9, which both interact with α3ß1 integrin and regulate α3ß1 integrin activity in different contexts. Mapping experiments indicate that JAM-A associates with α3ß1 integrin and tetraspanins CD151 and CD9 through its extracellular domain. Similar to depletion of JAM-A, depletion of either α3ß1 integrin or tetraspanins CD151 and CD9 in MDCK cells slows down collective cell migration. Our findings suggest that JAM-A exists with α3ß1 integrin and tetraspanins CD151 and CD9 in a functional complex to regulate collective cell migration of polarized epithelial cells.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Integrina alfa3beta1/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 29/metabolismo , Animales , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Perros , Doxorrubicina/farmacología , Humanos , Molécula A de Adhesión de Unión/antagonistas & inhibidores , Molécula A de Adhesión de Unión/genética , Células de Riñón Canino Madin Darby , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
5.
Nat Commun ; 12(1): 3624, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34131132

RESUMEN

The LIM and SH3 domain protein 1 (Lasp1) was originally cloned from metastatic breast cancer and characterised as an adaptor molecule associated with tumourigenesis and cancer cell invasion. However, the regulation of Lasp1 and its function in the aggressive transformation of cells is unclear. Here we use integrative epigenomic profiling of invasive fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and from mouse models of the disease, to identify Lasp1 as an epigenomically co-modified region in chronic inflammatory arthritis and a functionally important binding partner of the Cadherin-11/ß-Catenin complex in zipper-like cell-to-cell contacts. In vitro, loss or blocking of Lasp1 alters pathological tissue formation, migratory behaviour and platelet-derived growth factor response of arthritic FLS. In arthritic human TNF transgenic mice, deletion of Lasp1 reduces arthritic joint destruction. Therefore, we show a function of Lasp1 in cellular junction formation and inflammatory tissue remodelling and identify Lasp1 as a potential target for treating inflammatory joint disorders associated with aggressive cellular transformation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Uniones Adherentes/metabolismo , Artritis/metabolismo , Transformación Celular Neoplásica/metabolismo , Proteínas del Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Artritis/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Cadherinas/metabolismo , Proteínas del Citoesqueleto/genética , Femenino , Proteínas de Homeodominio , Proteínas con Dominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos , beta Catenina/metabolismo
6.
J Biol Chem ; 296: 100136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33268376

RESUMEN

To migrate, cells assume a polarized morphology, extending forward with a leading edge with their trailing edge retracting back toward the cell body. Both cell extension and retraction critically depend on the organization and dynamics of the actin cytoskeleton, and the small, monomeric GTPases Rac and Rho are important regulators of actin. Activation of Rac induces actin polymerization and cell extension, whereas activation of Rho enhances acto-myosin II contractility and cell retraction. To coordinate migration, these processes must be carefully regulated. The myosin Myo9b, a Rho GTPase-activating protein (GAP), negatively regulates Rho activity and deletion of Myo9b in leukocytes impairs cell migration through increased Rho activity. However, it is not known whether cell motility is regulated by global or local inhibition of Rho activity by Myo9b. Here, we addressed this question by using Myo9b-deficient macrophage-like cells that expressed different recombinant Myo9b constructs. We found that Myo9b accumulates in lamellipodial extensions generated by Rac-induced actin polymerization as a function of its motor activity. Deletion of Myo9b in HL-60-derived macrophages altered cell morphology and impaired cell migration. Reintroduction of Myo9b or Myo9b motor and GAP mutants revealed that local GAP activity rescues cell morphology and migration. In summary, Rac activation leads to actin polymerization and recruitment of Myo9b, which locally inhibits Rho activity to enhance directional cell migration.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Movimiento Celular/fisiología , Células Cultivadas , Proteínas Activadoras de GTPasa/genética , Humanos , Miosinas/genética
7.
Front Cell Dev Biol ; 8: 708, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850828

RESUMEN

Development and homeostasis of blood vessels critically depend on the regulation of endothelial cell-cell junctions. VE-cadherin (VEcad)-based cell-cell junctions are connected to the actin cytoskeleton and regulated by actin-binding proteins. Coronin 1B (Coro1B) is an actin binding protein that controls actin networks at classical lamellipodia. The role of Coro1B in endothelial cells (ECs) is not fully understood and investigated in this study. Here, we demonstrate that Coro1B is a novel component and regulator of cell-cell junctions in ECs. Immunofluorescence studies show that Coro1B colocalizes with VEcad at cell-cell junctions in monolayers of ECs. Live-cell imaging reveals that Coro1B is recruited to, and operated at actin-driven membrane protrusions at cell-cell junctions. Coro1B is recruited to cell-cell junctions via a mechanism that requires the relaxation of the actomyosin cytoskeleton. By analyzing the Coro1B interactome, we identify integrin-linked kinase (ILK) as new Coro1B-associated protein. Coro1B colocalizes with α-parvin, an interactor of ILK, at the leading edge of lamellipodia protrusions. Functional experiments reveal that depletion of Coro1B causes defects in the actin cytoskeleton and cell-cell junctions. Finally, in matrigel tube network assays, depletion of Coro1B results in reduced network complexity, tube number and tube length. Together, our findings point toward a critical role for Coro1B in the dynamic remodeling of endothelial cell-cell junctions and the assembly of endothelial networks.

8.
Front Physiol ; 11: 586921, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488392

RESUMEN

Vascular endothelial cell (EC) junctions are key structures controlling tissue homeostasis in physiology. In the last three decades, excellent studies have addressed many aspects of this complex and highly dynamic regulation, including cell signaling, remodeling processes of the proteins of tight junctions, adherens junctions, and gap junctions, the cytoskeleton, and post-transcriptional modifications, transcriptional activation, and gene silencing. In this dynamic process, vascular endothelial cadherin (VE-cadherin) provides the core structure of EC junctions mediating the physical adhesion of cells as well as the control of barrier function and monolayer integrity via remodeling processes, regulation of protein expression and post-translational modifications. In recent years, research teams have documented locally restricted dynamics of EC junctions in which actin-driven protrusions in plasma membranes play a central role. In this regard, our research group showed that the dynamics of VE-cadherin is driven by small (1-5 µm) actin-mediated protrusions in plasma membranes that, due to this specific function, were named "junction-associated intermittent lamellipodia" (JAIL). JAIL form at overlapping, adjacent cells, and exactly at this site new VE-cadherin interactions occur, leading to new VE-cadherin adhesion sites, a process that restores weak or lost VE-cadherin adhesion. Mechanistically, JAIL formation occurs locally restricted (1-5 µm) and underlies autoregulation in which the local VE-cadherin concentration is an important parameter. A decrease in the local concentration of VE-cadherin stimulates JAIL formation, whereas an increase in the concentration of VE-cadherin blocks it. JAIL mediated VE-cadherin remodeling at the subjunctional level have been shown to be of crucial importance in angiogenesis, wound healing, and changes in permeability during inflammation. The concept of subjunctional regulation of EC junctions is strongly supported by permeability assays, which can be employed to quantify actin-driven subjunctional changes. In this brief review, we summarize and discuss the current knowledge and concepts of subjunctional regulation in the endothelium.

9.
Glia ; 68(5): 947-962, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31743496

RESUMEN

Bmal1 is an essential component of the molecular clockwork, which drives circadian rhythms in cell function. In Bmal1-deficient (Bmal1-/-) mice, chronodisruption is associated with cognitive deficits and progressive brain pathology including astrocytosis indicated by increased expression of glial fibrillary acidic protein (GFAP). However, relatively little is known about the impact of Bmal1-deficiency on astrocyte morphology prior to astrocytosis. Therefore, in this study we analysed astrocyte morphology in young (6-8 weeks old) adult Bmal1-/- mice. At this age, overall GFAP immunoreactivity was not increased in Bmal1-deficient mice. At the ultrastructural level, we found a decrease in the volume fraction of the fine astrocytic processes that cover the hippocampal mossy fiber synapse, suggesting an impairment of perisynaptic processes and their contribution to neurotransmission. For further analyses of actin cytoskeleton, which is essential for distal process formation, we used cultured Bmal1-/- astrocytes. Bmal1-/- astrocytes showed an impaired formation of actin stress fibers. Moreover, Bmal1-/- astrocytes showed reduced levels of the actin-binding protein cortactin (CTTN). Cttn promoter region contains an E-Box like element and chromatin immunoprecipitation revealed that Cttn is a potential Bmal1 target gene. In addition, the level of GTP-bound (active) Rho-GTPase (Rho-GTP) was reduced in Bmal1-/- astrocytes. In summary, our data demonstrate that Bmal1-deficiency affects morphology of the fine astrocyte processes prior to strong upregulation of GFAP, presumably because of impaired Cttn expression and reduced Rho-GTP activation. These morphological changes might result in altered synaptic function and, thereby, relate to cognitive deficits in chronodisruption.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Citoesqueleto de Actina/metabolismo , Astrocitos/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Sinapsis/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Cortactina/genética , Cortactina/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Ratones Noqueados , Transmisión Sináptica/fisiología
10.
Transl Vis Sci Technol ; 8(6): 29, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31853425

RESUMEN

PURPOSE: Recently, a new marker protein for microglial cells in the brain was postulated, transmembrane protein 119 (TMEM119), raising the hope for a new opportunity to reliably and unambiguously detect microglial cells in histologic sections. It was of interest whether TMEM119 also was a reliable microglial marker in the retina. METHODS: Anti-TMEM119 antibodies of two providers were used to label microglia in the murine retina, and labeling properties were compared to those of antibodies against Iba1 and CD11b. As an example of a pathologic situation, labeling for TMEM119 was also performed in eyes treated by an argon laser as an experimental model for choroidal neovascularization. RESULTS: TMEM119 immunoreactivity (IR) was found on microglial cells in the naïve retina. However, specificity and sensitivity of TMEM119 IR varied clearly depending on the source of the antibody, age of the mouse, and location of retinal microglia. After laser treatment, however, microglial cells lost their IR for TMEM119 at the site of the laser spot. Moreover, other cells became positive for TMEM119; for example, Müller cells. CONCLUSIONS: TMEM119 is a useful marker for the microglia in the brain. However, retinal microglia shows variable IR for TMEM119, and the microglia is not the only cell showing TMEM IR. Therefore, TMEM119 appears not to be applicable as a general marker for the retinal microglia in pathologic situations. TRANSLATIONAL RELEVANCE: Reliable detection and quantification of microglial cells is of high importance to study disease mechanisms and effects of therapeutic approaches in the retina.

11.
Cell Rep ; 29(4): 1010-1026.e6, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31644899

RESUMEN

Actin-binding proteins are essential for linear and branched actin filament dynamics that control shape change, cell migration, and cell junction remodeling in vascular endothelium (endothelial cells [ECs]). The epithelial protein lost in neoplasm (EPLIN) is an actin-binding protein, expressed as EPLIN-α and EPLIN-ß by alternative promoters; however, the isoform-specific functions are not yet understood. Aortic compared to cava vein ECs and shear stress-exposed cultured ECs express increased EPLIN-ß levels that stabilize stress fibers. In contrast, EPLIN-α expression is increased in growing and migrating ECs, is targeted to membrane protrusions, and terminates their growth via interaction with the Arp2/3 complex. The data indicate that EPLIN-α controls protrusion dynamics while EPLIN-ß has an actin filament stabilizing role, which is consistent with FRAP analyses demonstrating a lower EPLIN-ß turnover rate compared to EPLIN-α. Together, EPLIN isoforms differentially control actin dynamics in ECs, essential in shear stress responses, cell migration, and barrier function.


Asunto(s)
Actinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endotelio Vascular/metabolismo , Animales , Aorta/citología , Aorta/metabolismo , Proliferación Celular , Proteínas del Citoesqueleto/genética , Endotelio Vascular/citología , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fibras de Estrés/metabolismo
12.
Oncotarget ; 10(38): 3625-3640, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31217898

RESUMEN

Circulatory microRNAs (c-miRNAs) are regulated in response to physical activity and may exert anti-atherosclerotic effects. Since the vascular endothelium is an abundant source of c-miRNAs, we aimed to identify novel vasculoprotective exercise-induced c-miRNAs by the combined analysis of published endothelial miRNA array data followed by in vivo and in vitro validation. We identified 8 different array-based publications reporting 185 endothelial shear stress-regulated miRNAs of which 13 were identified in ≥3 independent reports. Nine miRNAs had already been associated with physical activity. Of the remaining novel miRNAs, miR-98-3p and miR-125-5p were selected for further analysis due to reported vasculoprotective effects. Analysis in two different 4-week high-intensity interval training (HIIT) groups (group 1 [n=27]: 4x30 s, group 2 [n=25]: 8x15 s; all-out running) suggested significantly elevated miR-98 and miR-125a-5p levels in response to acute exercise at baseline and at follow-up. Endothelial in vitro shear stress experiments revealed increased miR-125a-5p and miR-98-3p levels in medium of human umbilical vein endothelial cells at 30 dyn/cm2 after 20 and 60 min, respectively. Our results suggest that miR-98-3p and miR-125a-5p can be rapidly secreted by endothelial cells, which might be the source of increased c-miR-98-3p and -125a-5p levels in response to HIIT. Both miRNAs attenuate endothelial inflammation and may mediate vasculoprotective effects of physical exercise including HIIT.

13.
Cells ; 8(5)2019 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-31035633

RESUMEN

Fluid shear stress stimulates endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production through multiple kinases, including protein kinase A (PKA), AMP-activated protein kinase (AMPK), AKT and Ca2+/calmodulin-dependent protein kinase II (CaMKII). Membrane-associated guanylate kinase (MAGUK) with inverted domain structure-1 (MAGI1) is an adaptor protein that stabilizes epithelial and endothelial cell-cell contacts. The aim of this study was to assess the unknown role of endothelial cell MAGI1 in response to fluid shear stress. We show constitutive expression and co-localization of MAGI1 with vascular endothelial cadherin (VE-cadherin) in endothelial cells at cellular junctions under static and laminar flow conditions. Fluid shear stress increases MAGI1 expression. MAGI1 silencing perturbed flow-dependent responses, specifically, Krüppel-like factor 4 (KLF4) expression, endothelial cell alignment, eNOS phosphorylation and NO production. MAGI1 overexpression had opposite effects and induced phosphorylation of PKA, AMPK, and CAMKII. Pharmacological inhibition of PKA and AMPK prevented MAGI1-mediated eNOS phosphorylation. Consistently, MAGI1 silencing and PKA inhibition suppressed the flow-induced NO production. Endothelial cell-specific transgenic expression of MAGI1 induced PKA and eNOS phosphorylation in vivo and increased NO production ex vivo in isolated endothelial cells. In conclusion, we have identified endothelial cell MAGI1 as a previously unrecognized mediator of fluid shear stress-induced and PKA/AMPK dependent eNOS activation and NO production.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Moléculas de Adhesión Celular/fisiología , Células Endoteliales/metabolismo , Guanilato-Quinasas/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Resistencia al Corte , Estrés Mecánico , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Células Endoteliales/citología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Factor 4 Similar a Kruppel , Ratones , Ratones Transgénicos , Transducción de Señal
14.
Ann Anat ; 225: 11-16, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31125600

RESUMEN

"Mortui vivos docent". Learning from donated bodies is widely considered a corner stone in pre-clinical education, advanced clinical training, and scientific progress in medicine. Making such use of dead human bodies must, of course, accord with high ethical standards and legal constraints. Piety and respect towards donors require using their remains (i) for valuable purposes, (ii) with what we call 'practical decency', (iii) in an efficient way, and (iv) with the utmost safety for all parties involved. With regard to these goals, practical aspects of preservation, safekeeping procedures (for up to several years), and complete documentation become of great importance, but have so far only been realized unsatisfactorily. Here, we describe the new Safe-Keeping System-Münster (SKS-Münster) that has been developed and implemented in the Anatomy Department of the University of Münster. Integrated components of the system include a paternoster transport system, a removal station with ventilation and an air barrier, RFID transponder technology, and an easy to use software package allowing the system together to provide all required functions in an unprecedented way.


Asunto(s)
Cadáver , Disección/ética , Disección/normas , Preservación Biológica/ética , Preservación Biológica/normas , Obtención de Tejidos y Órganos/normas , Anatomía/educación , Criopreservación/ética , Criopreservación/normas , Educación Médica/ética , Educación Médica/normas , Embalsamiento/ética , Embalsamiento/normas , Alemania , Humanos , Patología/educación , Seguridad , Facultades de Medicina/ética , Facultades de Medicina/normas , Estudiantes de Medicina , Obtención de Tejidos y Órganos/ética , Obtención de Tejidos y Órganos/legislación & jurisprudencia
15.
Biophys J ; 116(8): 1547-1559, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30878197

RESUMEN

Blood vessels are covered with endothelial cells on their inner surfaces, forming a selective and semipermeable barrier between the blood and the underlying tissue. Many pathological processes, such as inflammation or cancer metastasis, are accompanied by an increased vascular permeability. Progress in live cell imaging techniques has recently revealed that the structure of endothelial cell contacts is constantly reorganized and that endothelial junctions display high heterogeneities at a subcellular level even within one cell. Although it is assumed that this dynamic remodeling is associated with a local change in endothelial barrier function, a direct proof is missing mainly because of a lack of appropriate experimental techniques. Here, we describe a new assay to dynamically measure local endothelial barrier function with a lateral resolution of ∼15 µm and a temporal resolution of 1 min. In this setup, fluorescence-labeled molecules are added to the apical compartment of an endothelial monolayer, and the penetration of molecules from the apical to the basal compartment is recorded by total internal reflection fluorescence microscopy utilizing the generated evanescent field. With this technique, we found a remarkable heterogeneity in the local permeability for albumin within confluent endothelial cell layers. In regions with low permeability, stimulation with the proinflammatory agent histamine results in a transient increase in paracellular permeability. The effect showed a high variability along the contact of one individual cell, indicating a local regulation of endothelial barrier function. In regions with high basal permeability, histamine had no obvious effect. In contrast, the barrier-enhancing drug forskolin reduces the permeability for albumin and dextran uniformly along the cell junctions. Because this new approach can be readily combined with other live cell imaging techniques, it will contribute to a better understanding of the mechanisms underlying subcellular junctional reorganization during wound healing, inflammation, and angiogenesis.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Microscopía/métodos , Supervivencia Celular/efectos de los fármacos , Colforsina/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Procesamiento de Imagen Asistido por Computador , Cinética , Permeabilidad/efectos de los fármacos
16.
Cardiovasc Res ; 115(10): 1487-1499, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30785199

RESUMEN

AIMS: Oscillatory shear stress (OSS) is an atheroprone haemodynamic force that occurs in areas of vessel irregularities and is implicated in the pathogenesis of atherosclerosis. Changes in signalling and transcriptional programme in response to OSS have been vigorously studied; however, the underlying changes in the chromatin landscape controlling transcription remain to be elucidated. Here, we investigated the changes in the regulatory element (RE) landscape of endothelial cells under atheroprone OSS conditions in an in vitro model. METHODS AND RESULTS: Analyses of H3K27ac chromatin immunoprecipitation-Seq enrichment and RNA-Seq in primary human umbilical vein endothelial cells 6 h after onset of OSS identified 2806 differential responsive REs and 33 differentially expressed genes compared with control cells kept under static conditions. Furthermore, gene ontology analyses of putative RE-associated genes uncovered enrichment of WNT/HIPPO pathway and cytoskeleton reorganization signatures. Transcription factor (TF) binding motif analysis within RE sequences identified over-representation of ETS, Zinc finger, and activator protein 1 TF families that regulate cell cycle, proliferation, and apoptosis, implicating them in the development of atherosclerosis. Importantly, we confirmed the activation of EGR1 as well as the YAP/TAZ complex early (6 h) after onset of OSS in both cultured human vein and artery endothelial cells and, by undertaking luciferase assays, functionally verified their role in RE activation in response to OSS. CONCLUSIONS: Based on the identification and verification of specific responsive REs early upon OSS exposure, we propose an expanded mechanism of how OSS might contribute to the development of atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mecanotransducción Celular , Elementos de Respuesta , Factores de Transcripción/metabolismo , Arterias Umbilicales/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Células Cultivadas , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Placa Aterosclerótica , Mapas de Interacción de Proteínas , Flujo Sanguíneo Regional , Estrés Mecánico , Factores de Transcripción/genética , Arterias Umbilicales/patología , Arterias Umbilicales/fisiopatología
17.
J Cell Sci ; 132(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606730

RESUMEN

Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin-catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Movimiento Celular , Uniones Intercelulares/fisiología , Neovascularización Fisiológica , Seudópodos/fisiología , Animales , Humanos , Transducción de Señal
18.
Ann Anat ; 221: 179-185, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30393181

RESUMEN

The practice of human and veterinary medicine is based on the science of anatomy and dissection courses are still irreplaceable in the teaching of anatomy. Embalming is required to preserve body donors, for which process formaldehyde (FA) is the most frequently used and well characterized biocidal substance. Since January 2016, a new occupational exposure limit (OEL) for FA of 0.37mg/m3 issued by the European Committee on Hazardous Substances is obligatory since FA has been classified as a human 1B carcinogen. The anatomical institutes in the German-speaking region are called upon to consolidate efforts to reduce use of FA in anatomical curricula and body donations. As a result, the Anatomische Gesellschaft (AG) has formed a "Working Group for Reduction of Formaldehyde Exposure in Dissection Courses" tasked with discussion and recommendation of measures to reduce FA. Based on the assessment of the Working Group, the AG has issued an official opinion to the effect that, at this point in time, embalming of body donors without FA completely is not feasible. Therefore, a combination of approaches are to be used to reduce FA exposure, including technical and structural (architectural) adaptations, modification of protocols for fixation and preservation as well as organizational measures. One structural measure considered unavoidable is the integration of air supply and exhaust of individual dissecting tables into the ventilation system of the anatomy building. To embalm human body donors, intra-arterial perfusion fixation with up to 4% FA and a total fluid volume of 150mL/kg body weight will suffice. For animals where body weights and biology of bodies vary widely (i.e. special needs of fixation for ruminants, large animals as horses) perfusion fixation with up to 4% FA and a quantity of fixative solution of 10-15% of the body weight may be required. Preservation of body donors in storage (immersion) can be done with 40% ethanol or in a full bath preservation containing up to 2% FA. Corpse humidification in the dissecting room is possible with 2% phenoxyethanol, in each case without FA. In veterinary anatomy, microbiological burden is often higher and therefore might lead to a need of FA in long-time storage. Compliance with the current OEL in all institutes would appear to be feasible in combination with various organizational measures.


Asunto(s)
Anatomía/educación , Formaldehído/efectos adversos , Exposición Profesional/prevención & control , Hipersensibilidad Respiratoria/prevención & control , Humanos , Guías de Práctica Clínica como Asunto
19.
J Vasc Res ; 55(6): 350-364, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30544118

RESUMEN

Endothelial cells of the vascular system are dynamic cells whose molecular adaptability is decisive for the adjustment of homeostasis and organ perfusion. Advanced microscopic techniques, automation processing, and image analysis software was shown to improve the understanding of vascular biology. In this work, we describe advanced methods that allow investigating the dynamics of endothelial cell contacts. The development of viral vectors has contributed significantly to the genetic manipulation of endothelial cells. We used the Gibson assembly as a quick and cheap cloning system for introducing sequences into the lentiviral-based pFUGW vector. Furthermore, classical fluorescence tags such as mCherry and EGFP were compared with self-labeling tags such as Halo and SNAP for their suitability to study junction dynamics in cultured endothelium, and found the self-labeling tags as useful tools. Using such combinations, we found maintained cell junction integrity during shear stress-induced junction remodeling using VE-cadherin-EGFP. Remodeling was accompanied by VE-cadherin plaque formation, indicating that this process is mediated by the for-mation of the actin-driven junction-associated intermittent lamellipodia, JAIL. The combined methods including the Gibson assembly, lentiviral mediated gene transfer, spinning disk-based live cell imaging, and software for quantification allow analyses of the endothelial cell junction dynamics under static and under shear stress conditions.


Asunto(s)
Clonación Molecular/métodos , Células Endoteliales/fisiología , Células Endoteliales/ultraestructura , Colorantes Fluorescentes , Uniones Intercelulares/fisiología , Animales , Anticuerpos , Anticuerpos Monoclonales , Cadherinas/análisis , Cadherinas/genética , Expresión Génica , Vectores Genéticos , Cabras/inmunología , Proteínas Fluorescentes Verdes/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Immunoblotting , Uniones Intercelulares/química , Ratones , Conejos/inmunología , beta Catenina/análisis , gamma Catenina/análisis
20.
Histochem Cell Biol ; 149(1): 15-30, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29143117

RESUMEN

The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased ß-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.


Asunto(s)
Antígenos CD/biosíntesis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/biosíntesis , Diferenciación Celular , Células Endoteliales/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Proliferación Celular , Células Endoteliales/citología , Femenino , Humanos , Células MCF-7 , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA