Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
medRxiv ; 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38464316

Introduction: Long-term systolic blood pressure variability (BPV) has been proposed as a novel risk factor for dementia, but the underlying mechanisms are largely unknown. We aimed to investigate the association between long-term blood pressure variability (BPV), brain injury, and cognitive decline in patients with mild cognitive symptoms and cerebral amyloid angiopathy (CAA), a well-characterized small-vessel disease that causes cognitive decline in older adults. Methods: Using a prospective memory clinic cohort, we enrolled 102 participants, of whom 52 with probable CAA. All underwent a 3-tesla research MRI at baseline and annual neuropsychological evaluation over 2 years, for which standardized z-scores for four cognitive domains were calculated. BPV was assessed using a coefficient of variation derived from serial outpatient BP measurements (median 12) over five years. We measured the peak width of skeletonized mean diffusivity (PSMD) as a marker of white matter integrity, and other neuroimaging markers of CAA, including lacunes and cortical cerebral microinfarcts. Using regression models, we evaluated the association of BPV with microstructural brain injury and whether CAA modified this association. We also examined the association of BPV with subsequent cognitive decline. Results: Systolic BPV was dose-dependently associated with PSMD (estimate=0.22, 95% CI: 0.06, 0.39, p=0.010), independent of age, sex, mean BP, common vascular risk factors, brain atrophy, and CAA severity. The presence of probable CAA strengthened the association between BPV and PSMD (estimate=9.33, 95% CI: 1.32, 17.34, p for interaction = 0.023). Higher BPV correlated with greater ischemic injury (lobar lacunes and cortical cerebral microinfarcts) and a decline in global cognition and processing speed (estimate=-0.30, 95% CI: -0.55, -0.04, p=0.022). Discussion: Long-term BPV has a dose-dependent association with alterations in white matter integrity, lobar lacunes, and cortical cerebral microinfarcts, and predicts cognitive decline. Controlling BPV is a potential strategic approach to prevent cognitive decline, especially in early-stage CAA.

2.
Neurology ; 102(2): e207854, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38165326

BACKGROUND AND OBJECTIVES: Accumulating evidence suggests that gray matter atrophy, often considered a marker of Alzheimer disease (AD), can also result from cerebral small vessel disease (CSVD). Cerebral amyloid angiopathy (CAA) is a form of sporadic CSVD, diagnosed through neuroimaging criteria, that often co-occurs with AD pathology and leads to cognitive impairment. We sought to identify the role of hippocampal integrity in the development of cognitive impairment in a cohort of patients with possible and probable CAA. METHODS: Patients were recruited from an ongoing CAA study at Massachusetts General Hospital. Composite scores defined performance in the cognitive domains of memory, language, executive function, and processing speed. Hippocampal subfields' volumes were measured from 3T MRI, using an automated method, and multivariate linear regression models were used to estimate their association with each cognitive domain and relationship to CAA-related neuroimaging markers. RESULTS: One hundred twenty patients, 36 with possible (age mean [range]: 75.6 [65.6-88.9]), 67 with probable CAA (75.9 [59.0-94.0]), and 17 controls without cognitive impairment and CSVD (72.4 [62.5-82.7]; 76.4% female patients), were included in this study. We found a positive association between all investigated hippocampal subfields and memory and language, whereas specific subfields accounted for executive function (CA4 [Estimate = 5.43; 95% CI 1.26-9.61; p = 0.020], subiculum [Estimate = 2.85; 95% CI 0.67-5.02; p = 0.022]), and processing speed (subiculum [Estimate = 1.99; 95% CI 0.13-3.85; p = 0.036]). These findings were independent of other CAA-related markers, which did not have an influence on cognition in this cohort. Peak width of skeletonized mean diffusivity (PSMD), a measure of white matter integrity, was negatively associated with hippocampal subfields' volumes (CA3 [Estimate = -0.012; 95% CI -0.020 to -0.004; p = 0.034], CA4 [Estimate = -0.010; 95% CI -0.020 to -0.0007; p = 0.037], subiculum [Estimate = -0.019; 95% CI -0.042 to -0.0001; p = 0.003]). DISCUSSION: These results suggest that hippocampal integrity is an independent contributor to cognitive impairment in patients with CAA and that it might be related to loss of integrity in the white matter. Further studies exploring potential causes and directionality of the relationship between white matter and hippocampal integrity may be warranted.


Alzheimer Disease , Cerebral Amyloid Angiopathy , Cerebral Small Vessel Diseases , Cognitive Dysfunction , Humans , Female , Male , Cognition , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Executive Function , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Hippocampus/diagnostic imaging , Alzheimer Disease/diagnostic imaging
3.
Nat Med ; 29(5): 1243-1252, 2023 05.
Article En | MEDLINE | ID: mdl-37188781

We characterized the world's second case with ascertained extreme resilience to autosomal dominant Alzheimer's disease (ADAD). Side-by-side comparisons of this male case and the previously reported female case with ADAD homozygote for the APOE3 Christchurch (APOECh) variant allowed us to discern common features. The male remained cognitively intact until 67 years of age despite carrying a PSEN1-E280A mutation. Like the APOECh carrier, he had extremely elevated amyloid plaque burden and limited entorhinal Tau tangle burden. He did not carry the APOECh variant but was heterozygous for a rare variant in RELN (H3447R, termed COLBOS after the Colombia-Boston biomarker research study), a ligand that like apolipoprotein E binds to the VLDLr and APOEr2 receptors. RELN-COLBOS is a gain-of-function variant showing stronger ability to activate its canonical protein target Dab1 and reduce human Tau phosphorylation in a knockin mouse. A genetic variant in a case protected from ADAD suggests a role for RELN signaling in resilience to dementia.


Alzheimer Disease , Animals , Female , Humans , Male , Mice , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Heterozygote , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Signal Transduction
4.
Brain Commun ; 5(3): fcad146, 2023.
Article En | MEDLINE | ID: mdl-37252014

A classical early sign of typical Alzheimer's disease is memory decline, which has been linked to the aggregation of tau in the medial temporal lobe. Verbal delayed free recall and recognition tests have consistently probed useful to detect early memory decline, and there is substantial debate on how performance, particularly in recognition tests, is differentially affected through health and disease in older adults. Using in vivo PET-Braak staging, we investigated delayed recall and recognition memory dysfunction across the Alzheimer's disease spectrum. Our cross-sectional study included 144 cognitively unimpaired elderly, 39 amyloid-ß+ individuals with mild cognitive impairment and 29 amyloid-ß+ Alzheimer's disease patients from the Translational Biomarkers in Aging and Dementia cohort, who underwent [18F]MK6240 tau and [18F]AZD4694 amyloid PET imaging, structural MRI and memory assessments. We applied non-parametric comparisons, correlation analyses, regression models and voxel-wise analyses. In comparison with PET-Braak Stage 0, we found that reduced, but not clinically significant, delayed recall starts at PET-Braak Stage II (adjusted P < 0.0015), and that recognition (adjusted P = 0.011) displayed a significant decline starting at PET-Braak Stage IV. While performance in both delayed recall and recognition related to tau in nearly the same cortical areas, further analyses showed that delayed recall rendered stronger associations in areas of early tau accumulation, whereas recognition displayed stronger correlations in mostly posterior neocortical regions. Our results support the notion that delayed recall and recognition deficits are predominantly associated with tau load in allocortical and neocortical areas, respectively. Overall, delayed recall seems to be more dependent on the integrity of anterior medial temporal lobe structures, while recognition appears to be more affected by tau accumulation in cortices beyond medial temporal regions.

5.
Neurology ; 100(19): e2007-e2016, 2023 05 09.
Article En | MEDLINE | ID: mdl-36941070

BACKGROUND AND OBJECTIVE: To analyze the prevalence and associated clinical characteristics of apathy in sporadic cerebral amyloid angiopathy and investigate whether apathy was associated with disease burden and disconnections of key structures in the reward circuit through a structural and functional multimodal neuroimaging approach. METHODS: Thirty-seven participants with probable sporadic cerebral amyloid angiopathy without symptomatic intracranial hemorrhage or dementia (mean age, 73.3 ± 7.2 years, % male = 59.5%) underwent a detailed neuropsychological evaluation, including measures of apathy and depression, and a multimodal MR neuroimaging study. A multiple linear regression analysis was used to assess the association of apathy with conventional small vessel disease neuroimaging markers. A voxel-based morphometry with a small volume correction within regions previously associated with apathy and a whole-brain tract-based spatial statistics were performed to identify differences in the gray matter and white matter between the apathetic and nonapathetic groups. Gray matter regions significantly associated with apathy were further evaluated for their functional alterations as seeds in the seed-based resting-state functional connectivity analysis. Potential confounders, namely, age, sex, and measures of depression, were entered as covariates in all analyses. RESULTS: A higher composite small vessel disease marker score (CAA-SVD) was associated with a higher degree of apathy (standardized coefficient = 1.35 (0.07-2.62), adjusted R2 = 27.90, p = 0.04). Lower gray matter volume of the bilateral orbitofrontal cortices was observed in the apathetic group than in the nonapathetic group (F = 13.20, family-wise error-corrected p = 0.028). The apathetic group demonstrated a widespread decrease in white matter microstructural integrity compared with the nonapathetic group. These tracts connect key regions within and between related reward circuits. Finally, there were no significant functional alterations between the apathetic and nonapathetic groups. DISCUSSION: Our findings revealed the orbitofrontal cortex as a key region in the reward circuit associated with apathy in sporadic cerebral amyloid angiopathy, independent from depression. Apathy was shown to be associated with a higher CAA-SVD score and an extensive disruption of white matter tracts, which suggested that a higher burden of CAA pathology and the disruption in large-scale white matter networks may underlie manifestations of apathy.


Apathy , Cerebral Amyloid Angiopathy , Humans , Male , Aged , Aged, 80 and over , Female , Magnetic Resonance Imaging , Cerebral Amyloid Angiopathy/complications , Brain/diagnostic imaging , Brain/pathology , Neuroimaging , Cerebral Hemorrhage/epidemiology
6.
Radiology ; 306(3): e212780, 2023 03.
Article En | MEDLINE | ID: mdl-36692402

A leading cause of white matter (WM) injury in older individuals is cerebral small vessel disease (SVD). Cerebral SVD is the most prevalent vascular contributor to cognitive impairment and dementia. Therapeutic progress for cerebral SVD and other WM disorders depends on the development and validation of neuroimaging markers suitable as outcome measures in future interventional trials. Diffusion-tensor imaging (DTI) is one of the best-suited MRI techniques for assessing the extent of WM damage in the brain. But the optimal method to analyze individual DTI data remains hindered by labor-intensive and time-consuming processes. Peak width of skeletonized mean diffusivity (PSMD), a recently developed fast, fully automated DTI marker, was designed to quantify the WM damage secondary to cerebral SVD and reflect related cognitive impairment. Despite its promising results, knowledge about PSMD is still limited in the radiologic community. This focused review provides an overview of the technical details of PSMD while synthesizing the available data on its clinical and neuroimaging associations. From a critical expert viewpoint, the authors discuss the limitations of PSMD and its current validation status as a neuroimaging marker for vascular cognitive impairment. Finally, they point out the gaps to be addressed to further advance the field.


Cerebral Small Vessel Diseases , Cognitive Dysfunction , White Matter , Humans , Aged , White Matter/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Neuroimaging/adverse effects , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/adverse effects , Cognitive Dysfunction/complications , Cerebral Small Vessel Diseases/complications
7.
Front Neurosci ; 16: 1051038, 2022.
Article En | MEDLINE | ID: mdl-36440281

Background: Peak width of skeletonized mean diffusivity (PSMD) is a promising diffusion tensor imaging (DTI) marker that shows consistent and strong cognitive associations in the context of different cerebral small vessel diseases (cSVD). Purpose: Investigate whether PSMD (1) is higher in patients with Cerebral Amyloid Angiopathy (CAA) than those with arteriolosclerosis; (2) can capture the anteroposterior distribution of CAA-related abnormalities; (3) shows similar neuroimaging and cognitive associations in comparison to other classical DTI markers, such as average mean diffusivity (MD) and fractional anisotropy (FA). Materials and methods: We analyzed cross-sectional neuroimaging and neuropsychological data from 90 non-demented memory-clinic subjects from a single center. Based on MRI findings, we classified them into probable-CAA (those that fulfilled the modified Boston criteria), subjects with MRI markers of cSVD not attributable to CAA (presumed arteriolosclerosis; cSVD), and subjects without evidence of cSVD on MRI (non-cSVD). We compared total and lobe-specific (frontal and occipital) DTI metrics values across the groups. We used linear regression models to investigate how PSMD, MD, and FA correlate with conventional neuroimaging markers of cSVD and cognitive scores in CAA. Results: PSMD was comparable in probable-CAA (median 4.06 × 10-4 mm2/s) and cSVD (4.07 × 10-4 mm2/s) patients, but higher than in non-cSVD (3.30 × 10-4 mm2/s; p < 0.001) subjects. Occipital-frontal PSMD gradients were higher in probable-CAA patients, and we observed a significant interaction between diagnosis and region on PSMD values [F(2, 87) = 3.887, p = 0.024]. PSMD was mainly associated with white matter hyperintensity volume, whereas MD and FA were also associated with other markers, especially with the burden of perivascular spaces. PSMD correlated with worse executive function (ß = -0.581, p < 0.001) and processing speed (ß = -0.463, p = 0.003), explaining more variance than other MRI markers. MD and FA were not associated with performance in any cognitive domain. Conclusion: PSMD is a promising biomarker of cognitive impairment in CAA that outperforms other conventional and DTI-based neuroimaging markers. Although global PSMD is similarly increased in different forms of cSVD, PSMD's spatial variations could potentially provide insights into the predominant type of underlying microvascular pathology.

8.
Alzheimers Res Ther ; 14(1): 89, 2022 06 29.
Article En | MEDLINE | ID: mdl-35768838

BACKGROUND: To promote the development of effective therapies, there is an important need to characterize the full spectrum of neuropathological changes associated with Alzheimer's disease. In line with this need, this study examined white matter abnormalities in individuals with early-onset autosomal dominant Alzheimer's disease, in relation to age and symptom severity. METHODS: This is a cross-sectional analysis of data collected in members of a large kindred with a PSEN1 E280A mutation. Participants were recruited between September 2011 and July 2012 from the Colombian Alzheimer's Prevention Initiative registry. The studied cohort comprised 50 participants aged between 20 and 55 years, including 20 cognitively unimpaired mutation carriers, 9 cognitively impaired mutation carriers, and 21 non-carriers. Participants completed an MRI, a lumbar puncture for cerebrospinal fluid collection, a florbetapir PET scan, and neurological and neuropsychological examinations. The volume of white matter hyperintensities (WMH) was compared between cognitively unimpaired carriers, cognitively impaired carriers, and non-carriers. Relationships between WMH, age, and cognitive performance were further examined in mutation carriers. RESULTS: The mean (SD) age of participants was 35.8 (9.6) years and 64% were women. Cardiovascular risk factors were uncommon and did not differ across groups. Cognitively impaired carriers [median, 6.37; interquartile range (IQR), 9.15] had an increased volume of WMH compared to both cognitively unimpaired carriers [median, 0.85; IQR, 0.79] and non-carriers [median, 1.07; IQR, 0.71]. In mutation carriers, the volume of WMH strongly correlated with cognition and age, with evidence for an accelerated rate of changes after the age of 43 years, 1 year earlier than the estimated median age of symptom onset. In multivariable regression models including cortical amyloid retention, superior parietal lobe cortical thickness, and cerebrospinal fluid phospho-tau, the volume of WMH was the only biomarker independently and significantly contributing to the total explained variance in cognitive performance. CONCLUSIONS: The volume of WMH is increased among individuals with symptomatic autosomal-dominant Alzheimer's disease, begins to increase prior to clinical symptom onset, and is an independent determinant of cognitive performance in this group. These findings suggest that WMH are a key component of autosomal-dominant Alzheimer's disease that is closely related to the progression of clinical symptoms.


Alzheimer Disease , White Matter , Adult , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography , Presenilin-1/genetics , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
9.
Brain Commun ; 4(3): fcac105, 2022.
Article En | MEDLINE | ID: mdl-35611313

The impact of vascular lesions on cognition is location dependent. Here, we assessed the contribution of small vessel disease lesions in the corpus callosum to vascular cognitive impairment in cerebral amyloid angiopathy, as a model for cerebral small vessel disease. Sixty-five patients with probable cerebral amyloid angiopathy underwent 3T magnetic resonance imaging, including a diffusion tensor imaging scan, and neuropsychological testing. Microstructural white-matter integrity was quantified by fractional anisotropy and mean diffusivity. Z-scores on individual neuropsychological tests were averaged into five cognitive domains: information processing speed, executive functioning, memory, language and visuospatial ability. Corpus callosum lesions were defined as haemorrhagic (microbleeds or larger bleeds) or ischaemic (microinfarcts, larger infarcts and diffuse fluid-attenuated inversion recovery hyperintensities). Associations between corpus callosum lesion presence, microstructural white-matter integrity and cognitive performance were examined with multiple regression models. The prevalence of corpus callosum lesions was confirmed in an independent cohort of memory clinic patients with and without cerebral amyloid angiopathy (n = 82). In parallel, we assessed corpus callosum lesions on ex vivo magnetic resonance imaging in cerebral amyloid angiopathy patients (n = 19) and controls (n = 5) and determined associated tissue abnormalities with histopathology. A total number of 21 corpus callosum lesions was found in 19/65 (29%) cerebral amyloid angiopathy patients. Corpus callosum lesion presence was associated with reduced microstructural white-matter integrity within the corpus callosum and in the whole-brain white matter. Patients with corpus callosum lesions performed significantly worse on all cognitive domains except language, compared with those without corpus callosum lesions after correcting for age, sex, education and time between magnetic resonance imaging and neuropsychological assessment. This association was independent of the presence of intracerebral haemorrhage, whole-brain fractional anisotropy and mean diffusivity, and white-matter hyperintensity volume and brain volume for the domains of information processing speed and executive functioning. In the memory clinic patient cohort, corpus callosum lesions were present in 14/54 (26%) patients with probable and 2/8 (25%) patients with possible cerebral amyloid angiopathy, and in 3/20 (15%) patients without cerebral amyloid angiopathy. In the ex vivo cohort, corpus callosum lesions were present in 10/19 (53%) patients and 2/5 (40%) controls. On histopathology, ischaemic corpus callosum lesions were associated with tissue loss and demyelination, which extended beyond the lesion core. Together, these data suggest that corpus callosum lesions are a frequent finding in cerebral amyloid angiopathy, and that they independently contribute to cognitive impairment through strategic microstructural disruption of white-matter tracts.

10.
Proc Natl Acad Sci U S A ; 119(15): e2113641119, 2022 04 12.
Article En | MEDLINE | ID: mdl-35380901

The human brain is composed of functional networks that have a modular topology, where brain regions are organized into communities that form internally dense (segregated) and externally sparse (integrated) subnetworks that underlie higher-order cognitive functioning. It is hypothesized that amyloid-ß and tau pathology in preclinical Alzheimer's disease (AD) spread through functional networks, disrupting neural communication that results in cognitive dysfunction. We used high-resolution (voxel-level) graph-based network analyses to test whether in vivo amyloid-ß and tau burden was associated with the segregation and integration of brain functional connections, and episodic memory, in cognitively unimpaired Presenilin-1 E280A carriers who are expected to develop early-onset AD dementia in ∼13 y on average. Compared to noncarriers, mutation carriers exhibited less functional segregation and integration in posterior default-mode network (DMN) regions, particularly the precuneus, and in the retrospenial cortex, which has been shown to link medial temporal regions and cortical regions of the DMN. Mutation carriers also showed greater functional segregation and integration in regions connected to the salience network, including the striatum and thalamus. Greater tau burden was associated with lower segregated and integrated functional connectivity of DMN regions, particularly the precuneus and medial prefrontal cortex. In turn, greater tau pathology was related to higher segregated and integrated functional connectivity in the retrospenial cortex and the anterior cingulate cortex, a hub of the salience network. These findings enlighten our understanding of how AD-related pathology distinctly alters the brain's functional architecture in the preclinical stage, possibly contributing to pathology propagation and ultimately resulting in dementia.


Alzheimer Disease , Brain , Connectome , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Heterozygote , Humans , Magnetic Resonance Imaging/methods , Memory Disorders/diagnostic imaging , Memory Disorders/genetics , Memory, Episodic , Positron-Emission Tomography/methods , Presenilin-1/genetics , tau Proteins/metabolism
11.
Nat Rev Neurol ; 18(5): 307-314, 2022 05.
Article En | MEDLINE | ID: mdl-35260817

Alzheimer disease and related dementias present considerable challenges to health-care and medical systems worldwide. In the USA, older Black and Latino individuals are more likely than older white individuals to have Alzheimer disease and related dementias. In this Perspective, we leverage our experience and expertise with older US Latino groups to review and discuss the need to integrate cultural factors into dementia research and care. We examine the importance of considering the effects of cultural factors on clinical presentation and diagnosis, dementia risk, clinical research and recruitment, and caregiving practices, with a focus on minoritized groups in the USA. We highlight critical gaps in the literature to stimulate future research aimed at improving the prevention and early detection of Alzheimer disease and related dementias and developing novel treatments and interventions across ethnoracially diverse populations. In addition, we briefly discuss some of our own initiatives to promote research and clinical care among Latino populations living in the USA.


Alzheimer Disease , Alzheimer Disease/diagnosis , Alzheimer Disease/therapy , Hispanic or Latino , Humans
12.
Brain Connect ; 12(1): 52-60, 2022 02.
Article En | MEDLINE | ID: mdl-33980027

Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterized by leukoencephalopathy leading to cognitive impairment. Subtle cognitive deficits can be observed early in the course of the disease, before the occurrence of the first stroke. Therefore, markers that can predict disease progression at this early stage, when interventions are likely to alter disease course, are needed. We aimed to examine the biological cascade of microstructural and macrostructural white matter (WM) abnormalities underlying cognitive deficits in CADASIL. Methods: We examined 20 nondemented CADASIL mutation carriers and 23 noncarriers who underwent neuropsychological evaluation and magnetic resonance imaging. Using probabilistic tractography of key WM tracts, we examined group differences in diffusivity measures and WM hyperintensity volume. Successive mediation models examined whether tract-specific WM abnormalities mediated subtle cognitive differences between CADASIL mutation carriers and noncarriers. Results: The largest effect size differentiating the two groups was observed for left superior longitudinal fasciculus-temporal (SLFt) diffusivity (Cohen's f = 0.49). No group differences were observed with a global diffusion measure. These specific microstructural differences in the SLFt were associated with higher WM hyperintensities burden, and subtle executive deficits in CADASIL mutation carriers. Discussion: Worse diffusivity in the left SLFt is related to greater severity of small vessel disease and worse executive functioning in the asymptomatic stage of the disease. Worse diffusivity of the left SLFt may potentially hold promise as an indicator of disease progression. Impact statement Diffusion tensor imaging outperforms conventional imaging of subcortical small vessel disease as a potential marker of future disease progression. Here we identified the left superior longitudinal temporal fasciculus as a critical white matter fiber bundle, of which worse diffusivity can link presence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy mutations to greater severity of small vessel disease and worse executive functioning in asymptomatic stages of the disease. This tract may hold promise and deserves further examination as an early indicator of disease progression.


CADASIL , Leukoencephalopathies , White Matter , Brain/diagnostic imaging , Brain/pathology , CADASIL/complications , CADASIL/diagnostic imaging , CADASIL/genetics , Cognition , Diffusion Tensor Imaging , Disease Progression , Humans , Leukoencephalopathies/complications , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/genetics , Magnetic Resonance Imaging , White Matter/diagnostic imaging , White Matter/pathology
13.
J Alzheimers Dis ; 82(2): 841-853, 2021.
Article En | MEDLINE | ID: mdl-34092645

BACKGROUND: Cardiovascular risk factors increase the risk of developing dementia, including Alzheimer's disease and vascular dementia. OBJECTIVE: Studying individuals with autosomal dominant mutations leading to the early onset of dementia, this study examines the effect of the global cardiovascular risk profile on early cognitive and neuroimaging features of Alzheimer's disease and vascular dementia. METHODS: We studied 85 non-demented and stroke-free individuals, including 20 subjects with Presenilin1 (PSEN1) E280A mutation leading to the early onset of autosomal dominant Alzheimer's disease (ADAD), 20 subjects with NOTCH3 mutations leading to cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and to the early onset of vascular dementia, and 45 non-affected family members (non-carriers). All subjects underwent clinical and neuropsychological evaluations and an MRI. The global cardiovascular risk profile was estimated using the office-based Framingham Cardiovascular Risk Profile (FCRP) score. RESULTS: In individuals with CADASIL, a higher FCRP score was associated with a reduced hippocampal volume (B = -0.06, p < 0.05) and an increased severity of cerebral microbleeds (B = 0.13, p < 0.001), lacunes (B = 0.30, p < 0.001), and perivascular space enlargement in the basal ganglia (B = 0.50, p < 0.05). There was no significant association between the FCRP score and neuroimaging measures in ADAD or non-carrier subjects. While the FCRP score was related to performance in executive function in non-carrier subjects (B = 0.06, p < 0.05), it was not significantly associated with cognitive performance in individuals with CADASIL or ADAD. CONCLUSION: Our results suggest that individuals with CADASIL and other forms of vascular cognitive impairment might particularly benefit from early interventions aimed at controlling cardiovascular risks.


Alzheimer Disease , Brain , Dementia, Vascular , Presenilin-1/genetics , Receptor, Notch3/genetics , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Alzheimer Disease/prevention & control , Brain/diagnostic imaging , Brain/pathology , Colombia/epidemiology , Dementia, Vascular/diagnosis , Dementia, Vascular/epidemiology , Dementia, Vascular/genetics , Dementia, Vascular/prevention & control , Early Diagnosis , Family , Female , Heart Disease Risk Factors , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Mutation , Neuropsychological Tests , Preventive Health Services/methods , Risk Factors , Risk Reduction Behavior
14.
Am J Pathol ; 191(11): 1856-1870, 2021 11.
Article En | MEDLINE | ID: mdl-33895122

Mutations in the NOTCH3 gene can lead to small-vessel disease in humans, including the well-characterized cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a condition caused by NOTCH3 mutations altering the number of cysteine residues in the extracellular domain of Notch3. Growing evidence indicates that other types of mutations in NOTCH3, including cysteine-sparing missense mutations or frameshift and premature stop codons, can lead to small-vessel disease phenotypes of variable severity or penetrance. There are currently no disease-modifying therapies for small-vessel disease, including those associated with NOTCH3 mutations. A deeper understanding of underlying molecular mechanisms and clearly defined targets are needed to promote the development of therapies. This review discusses two key pathophysiological mechanisms believed to contribute to the emergence and progression of small-vessel disease associated with NOTCH3 mutations: abnormal Notch3 aggregation and aberrant Notch3 signaling. This review offers a summary of the literature supporting and challenging the relevance of these mechanisms, together with an overview of available preclinical experiments derived from these mechanisms. It highlights knowledge gaps and future research directions. In view of recent evidence demonstrating the relatively high frequency of NOTCH3 mutations in the population, and their potential role in promoting small-vessel disease, progress in the development of therapies for NOTCH3-associated small-vessel disease is urgently needed.


Cerebral Small Vessel Diseases/metabolism , Cerebral Small Vessel Diseases/pathology , Protein Aggregation, Pathological/pathology , Receptor, Notch3/metabolism , Animals , CADASIL/genetics , CADASIL/metabolism , CADASIL/pathology , Cerebral Small Vessel Diseases/genetics , Humans , Mutation , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Receptor, Notch3/genetics , Signal Transduction/physiology
15.
Neurology ; 96(15): e1975-e1986, 2021 04 13.
Article En | MEDLINE | ID: mdl-33627498

OBJECTIVE: Relying on tau-PET imaging, this cross-sectional study explored whether memory impairment is linked to the presence of concomitant tau pathology in individuals with cerebral amyloid angiopathy (CAA). METHODS: Forty-six patients with probable CAA underwent a neuropsychological examination and an MRI for quantification of structural markers of cerebral small vessel disease. A subset of these participants also completed a [11C]-Pittsburgh compound B (n = 39) and [18F]-flortaucipir (n = 40) PET for in vivo estimation of amyloid and tau burden, respectively. Participants were classified as amnestic or nonamnestic on the basis of neuropsychological performance. Statistical analyses were performed to examine differences in cognition, structural markers of cerebral small vessel disease, and amyloid- and tau-PET retention between participants with amnestic and those with nonamnestic CAA. RESULTS: Patients with probable CAA with an amnestic presentation displayed a globally more severe profile of cognitive impairment, smaller hippocampal volume (p < 0.001), and increased tau-PET binding in regions susceptible to Alzheimer disease neurodegeneration (p = 0.003) compared to their nonamnestic counterparts. Amnestic and nonamnestic patients with CAA did not differ on any other MRI markers or on amyloid-PET binding. In a generalized linear model including all evaluated neuroimaging markers, tau-PET retention (ß = -0.85, p = 0.001) and hippocampal volume (ß = 0.64 p = 0.01) were the only significant predictors of memory performance. The cognitive profile of patients with CAA with an elevated tau-PET retention was distinctly characterized by a significantly lower performance on the memory domain (p = 0.004). CONCLUSIONS: These results suggest that the presence of objective memory impairment in patients with probable CAA could serve as a marker for underlying tau pathology. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that tau-PET retention is related to the presence of objective memory impairment in patients with CAA.


Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Memory Disorders/etiology , tau Proteins/metabolism , Aged , Cerebral Amyloid Angiopathy/metabolism , Cross-Sectional Studies , Female , Humans , Male , Neuroimaging/methods , Positron-Emission Tomography
17.
J Int Neuropsychol Soc ; 26(10): 1006-1018, 2020 11.
Article En | MEDLINE | ID: mdl-32487276

OBJECTIVES: Executive dysfunction is a predominant cognitive symptom in cerebral small vessel disease (SVD). The Institute of Cognitive Neurology Frontal Screening (IFS) is a well-validated screening tool allowing the rapid assessment of multiple components of executive function in Spanish-speaking individuals. In this study, we examined performance on the IFS in subjects with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), an inherited condition leading to the early onset of SVD. We further explored associations between performance on the IFS and magnetic resonance imaging (MRI) markers of SVD. METHODS: We recruited 24 asymptomatic CADASIL subjects and 23 noncarriers from Colombia. All subjects underwent a research MRI and a neuropsychological evaluation, including the IFS. Structural MRI markers of SVD were quantified in each subject, together with an SVD Sum Score representing the overall burden of cerebrovascular alterations. General linear model, correlation, and receiver operating characteristic curve analyses were used to explore group differences on the IFS and relationships with MRI markers of SVD. RESULTS: CADASIL subjects had a significantly reduced performance on the IFS Total Score. Performance on the IFS correlated with all quantified markers of SVD, except for brain atrophy and perivascular spaces enlargement. Finally, while the IFS Total Score was not able to accurately discriminate between carriers and noncarriers, it showed adequate sensitivity and specificity in detecting the presence of multiple MRI markers of SVD. CONCLUSIONS: These results suggest that the IFS may be a useful screening tool to assess executive function and disease severity in the context of SVD.


CADASIL/psychology , Cerebral Small Vessel Diseases/psychology , Cognitive Dysfunction/diagnostic imaging , Executive Function/physiology , Magnetic Resonance Imaging , Adult , Cognition Disorders , Cohort Studies , Colombia , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Neuropsychological Tests
18.
Neuroimage ; 203: 116108, 2019 12.
Article En | MEDLINE | ID: mdl-31472249

Disentangling age-related changes from developmental variations in hippocampal volume has proven challenging. This article presents a manual segmentation protocol for the hippocampal-to-ventricle ratio (HVR), a measure combining the assessment of hippocampal volume with surrounding ventricular volume. By providing in a single measure both a standard volumetric assessment of the hippocampus and an approximation of volume loss, based on ventricular enlargement, we believe the HVR provides a superior cross-sectional estimation of hippocampal structural integrity. In a first attempt to validate this measure, we contrasted the HVR and standard hippocampal volume in their associations with age and memory performance in two independent cohorts of healthy aging individuals. The first cohort consisted in 50 cognitively normal subjects (mean age: 66.8 years, SD: 4.96, range: 60-75 years), while the second cohort included 88 cognitively normal subjects (mean age: 65.06 years, SD: 6.42, range: 55-80 years). We showed that the manual segmentation protocol for the HVR can be implemented with high reliability. In both cohorts, the HVR showed stronger negative associations with age than standard hippocampal volume. Correlations with memory performance were also numerically superior with the HVR than standard hippocampal volume, across the two cohorts. These findings support an added benefit of using the HVR over standard hippocampal volume when examining relationships with age or memory function in aging individuals. Although further validation is required, we propose that the computation of the HVR is a promising method to improve the evaluation of hippocampal integrity from cross-sectional MR images.


Cerebral Ventricles/diagnostic imaging , Hippocampus/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Aged , Aged, 80 and over , Cerebral Ventricles/anatomy & histology , Female , Hippocampus/anatomy & histology , Humans , Male , Memory/physiology , Middle Aged , Observer Variation
19.
Neurosci Lett ; 698: 173-179, 2019 04 17.
Article En | MEDLINE | ID: mdl-30634011

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is an inherited small vessel disease that leads to early cerebrovascular events and functional disability. It is the most common single-gene disorder leading to stroke. Magnetic resonance imaging (MRI) is a central component of the diagnosis and monitoring of CADASIL. Here we provide a descriptive review of the literature on three important aspects pertaining to the use of MRI in CADASIL. First, we review past research exploring MRI markers for this disease. Secondly, we describe results from studies investigating associations between neuroimaging abnormalities and neuropathology in CADASIL. Finally, we discuss previous findings relating MRI markers to clinical symptoms. This review thus provides a summary of the current state of knowledge regarding the use of MRI in CADASIL as well as suggestions for future research.


Brain/pathology , CADASIL/pathology , Magnetic Resonance Imaging , Neuroimaging , Stroke/pathology , Biomarkers , CADASIL/diagnosis , Humans , Stroke/diagnosis
...