Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Article En | MEDLINE | ID: mdl-38635834

BACKGROUND: The anti-IgE monoclonal, omalizumab, is widely used for severe asthma. This study aimed to identify biomarkers that predict clinical improvement during one year of omalizumab treatment. METHODS: 1-year, open-label, Study of Mechanisms of action of Omalizumab in Severe Asthma (SoMOSA) involving 216 severe (GINA step 4/5) uncontrolled atopic asthmatics (≥2 severe exacerbations in previous year) on high-dose inhaled corticosteroids, long-acting ß-agonists, ± mOCS. It had two phases: 0-16 weeks, to assess early clinical improvement by Global Evaluation of Therapeutic Effectiveness (GETE), and 16-52 weeks, to assess late responses by ≥50% reduction in exacerbations or dose of maintenance oral corticosteroids (mOCS). All participants provided samples (exhaled breath, blood, sputum, urine) before and after 16 weeks of omalizumab treatment. RESULTS: 191 patients completed phase 1; 63% had early improvement. Of 173 who completed phase 2, 69% had reduced exacerbations by ≥50%, while 57% (37/65) on mOCS reduced their dose by ≥50%. The primary outcome 2, 3-dinor-11-ß-PGF2α, GETE and standard clinical biomarkers (blood and sputum eosinophils, exhaled nitric oxide, serum IgE) did not predict either clinical response. Five breathomics (GC-MS) and 5 plasma lipid biomarkers strongly predicted the ≥50% reduction in exacerbations (receiver operating characteristic area under the curve (AUC): 0.780 and 0.922, respectively) and early responses (AUC:0.835 and 0.949, respectively). In independent cohorts, the GC-MS biomarkers differentiated between severe and mild asthma. Conclusions This is the first discovery of omics biomarkers that predict improvement to a biologic for asthma. Their prospective validation and development for clinical use is justified. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
Cancer Res ; 84(10): 1597-1612, 2024 May 15.
Article En | MEDLINE | ID: mdl-38588411

Resistance to immune checkpoint blockade (ICB) therapy represents a formidable clinical challenge limiting the efficacy of immunotherapy. In particular, prostate cancer poses a challenge for ICB therapy due to its immunosuppressive features. A ketogenic diet (KD) has been reported to enhance response to ICB therapy in some other cancer models. However, adverse effects associated with continuous KD were also observed, demanding better mechanistic understanding and optimized regimens for using KD as an immunotherapy sensitizer. In this study, we established a series of ICB-resistant prostate cancer cell lines and developed a highly effective strategy of combining anti-PD1 and anti-CTLA4 antibodies with histone deacetylase inhibitor (HDACi) vorinostat, a cyclic KD (CKD), or dietary supplementation of the ketone body ß-hydroxybutyrate (BHB), which is an endogenous HDACi. CKD and BHB supplementation each delayed prostate cancer tumor growth as monotherapy, and both BHB and adaptive immunity were required for the antitumor activity of CKD. Single-cell transcriptomic and proteomic profiling revealed that HDACi and ketogenesis enhanced ICB efficacy through both cancer cell-intrinsic mechanisms, including upregulation of MHC class I molecules, and -extrinsic mechanisms, such as CD8+ T-cell chemoattraction, M1/M2 macrophage rebalancing, monocyte differentiation toward antigen-presenting cells, and diminished neutrophil infiltration. Overall, these findings illuminate a potential clinical path of using HDACi and optimized KD regimens to enhance ICB therapy for prostate cancer. SIGNIFICANCE: Optimized cyclic ketogenic diet and 1,3-butanediol supplementation regimens enhance the efficacy of immune checkpoint blockade in prostate cancer through epigenetic and immune modulations, providing dietary interventions to sensitize tumors to immunotherapy.


Diet, Ketogenic , Drug Resistance, Neoplasm , Epigenesis, Genetic , Immune Checkpoint Inhibitors , Prostatic Neoplasms , Male , Diet, Ketogenic/methods , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Prostatic Neoplasms/diet therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Epigenesis, Genetic/drug effects , Animals , Cell Line, Tumor , Vorinostat/pharmacology , Vorinostat/therapeutic use , Vorinostat/administration & dosage , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , 3-Hydroxybutyric Acid , Xenograft Model Antitumor Assays , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors
3.
Cell Rep ; 43(4): 113984, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38520689

Targeting programmed cell death protein 1 (PD-1) is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment. Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1). Acod1 has an important role in the resistance to αPD-1, as decreasing Acod1 levels in αPD-1-resistant cancer cells can sensitize tumors to αPD-1 therapy. Mechanistically, cancer cells with high Acod1 inhibit the proliferation of naive CD8+ T cells through the secretion of inhibitory factors. Surprisingly, inhibition of CD8+ T cell proliferation is not dependent on the secretion of ITA but is instead a consequence of the release of small inhibitory peptides. Our study suggests that strategies to counter the activity of Acod1 in cancer cells may sensitize tumors to ICB therapy.


Carboxy-Lyases , Humans , Animals , Cell Line, Tumor , Carboxy-Lyases/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Peptides/metabolism , Peptides/pharmacology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Cell Proliferation/drug effects , Immune Evasion , Mice, Inbred C57BL
4.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Article En | MEDLINE | ID: mdl-38295882

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Asthma , Hypersensitivity , United States , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Hypersensitivity/genetics , Asthma/etiology , Genomics , Proteomics , Metabolomics
5.
bioRxiv ; 2023 Sep 17.
Article En | MEDLINE | ID: mdl-37745450

Targeting PD-1 is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment (TME). Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1). Acod1 has an important role in the resistance to αPD-1, as decreasing Acod1 levels in αPD-1 resistant cancer cells can sensitize tumors to αPD-1 therapy. Mechanistically, cancer cells with high Acod1 inhibit the proliferation of naïve CD8+ T cells through the secretion of inhibitory factors. Surprisingly, inhibition of CD8+ T cell proliferation is not dependent on secretion of ITA, but is instead a consequence of the release of small inhibitory peptides. Our study suggests that strategies to counter the activity of Acod1 in cancer cells may sensitize tumors to ICB therapy.

6.
Adv Exp Med Biol ; 1426: 215-235, 2023.
Article En | MEDLINE | ID: mdl-37464123

The application of mathematical and computational analysis, together with the modelling of biological and physiological processes, is transforming our understanding of the pathophysiology of complex diseases. This systems biology approach incorporates large amounts of genomic, transcriptomic, proteomic, metabolomic, breathomic, metagenomic and imaging data from disease sites together with deep clinical phenotyping, including patient-reported outcomes. Integration of these datasets will provide a greater understanding of the molecular pathways associated with severe asthma in each individual patient and determine their personalised treatment regime. This chapter describes some of the data integration methods used to combine data sets and gives examples of the results obtained using single datasets and merging of multiple datasets (data fusion and data combination) from several consortia including the severe asthma research programme (SARP) and the Unbiased Biomarkers Predictive of Respiratory Disease Outcomes (U-BIOPRED) consortia. These results highlight the involvement of several different immune and inflammatory pathways and factors in distinct subsets of patients with severe asthma. These pathways often overlap in patients with distinct clinical features of asthma, which may explain the incomplete or no response in patients undergoing specific targeted therapy. Collaboration between groups will improve the predictions obtained using a systems medicine approach in severe asthma.


Asthma , Respiration Disorders , Humans , Proteomics , Systems Biology , Asthma/diagnosis , Asthma/genetics , Biomarkers/metabolism
7.
Article En | MEDLINE | ID: mdl-37521407

The induction of apoptosis, a programmed cell death pathway governed by activation of caspases, can result in fundamental changes in metabolism that either facilitate or restrict the execution of cell death. In addition, metabolic adaptations can significantly impact whether cells in fact initiate the apoptotic cascade. In this mini-review, we will highlight and discuss the interconnectedness of apoptotic regulation and metabolic alterations, two biological outcomes whose regulators are intertwined.

8.
Brain Behav Immun ; 111: 249-258, 2023 07.
Article En | MEDLINE | ID: mdl-37146653

BACKGROUND: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. METHODS: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. RESULTS: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). CONCLUSIONS: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition.


Asthma , Interleukin-6 , Humans , Asthma/complications , Anxiety , Comorbidity , Inflammation/complications , Biomarkers
9.
J Allergy Clin Immunol ; 152(1): 117-125, 2023 07.
Article En | MEDLINE | ID: mdl-36918039

BACKGROUND: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE: We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS: Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION: We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.


Asthma , Sputum , Humans , Sputum/metabolism , Lipidomics , Proteomics/methods , Cross-Sectional Studies , Prospective Studies , Lipids
10.
Thorax ; 78(7): 682-689, 2023 07.
Article En | MEDLINE | ID: mdl-36808085

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a debilitating, progressive disease with a median survival time of 3-5 years. Diagnosis remains challenging and disease progression varies greatly, suggesting the possibility of distinct subphenotypes. METHODS AND RESULTS: We analysed publicly available peripheral blood mononuclear cell expression datasets for 219 IPF, 411 asthma, 362 tuberculosis, 151 healthy, 92 HIV and 83 other disease samples, totalling 1318 patients. We integrated the datasets and split them into train (n=871) and test (n=477) cohorts to investigate the utility of a machine learning model (support vector machine) for predicting IPF. A panel of 44 genes predicted IPF in a background of healthy, tuberculosis, HIV and asthma with an area under the curve of 0.9464, corresponding to a sensitivity of 0.865 and a specificity of 0.89. We then applied topological data analysis to investigate the possibility of subphenotypes within IPF. We identified five molecular subphenotypes of IPF, one of which corresponded to a phenotype enriched for death/transplant. The subphenotypes were molecularly characterised using bioinformatic and pathway analysis tools identifying distinct subphenotype features including one which suggests an extrapulmonary or systemic fibrotic disease. CONCLUSIONS: Integration of multiple datasets, from the same tissue, enabled the development of a model to accurately predict IPF using a panel of 44 genes. Furthermore, topological data analysis identified distinct subphenotypes of patients with IPF which were defined by differences in molecular pathobiology and clinical characteristics.


Asthma , HIV Infections , Idiopathic Pulmonary Fibrosis , Humans , Leukocytes, Mononuclear , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/diagnosis , Phenotype
11.
Front Immunol ; 13: 988685, 2022.
Article En | MEDLINE | ID: mdl-36203591

Background: The COVID-19 pandemic has created pressure on healthcare systems worldwide. Tools that can stratify individuals according to prognosis could allow for more efficient allocation of healthcare resources and thus improved patient outcomes. It is currently unclear if blood gene expression signatures derived from patients at the point of admission to hospital could provide useful prognostic information. Methods: Gene expression of whole blood obtained at the point of admission from a cohort of 78 patients hospitalised with COVID-19 during the first wave was measured by high resolution RNA sequencing. Gene signatures predictive of admission to Intensive Care Unit were identified and tested using machine learning and topological data analysis, TopMD. Results: The best gene expression signature predictive of ICU admission was defined using topological data analysis with an accuracy: 0.72 and ROC AUC: 0.76. The gene signature was primarily based on differentially activated pathways controlling epidermal growth factor receptor (EGFR) presentation, Peroxisome proliferator-activated receptor alpha (PPAR-α) signalling and Transforming growth factor beta (TGF-ß) signalling. Conclusions: Gene expression signatures from blood taken at the point of admission to hospital predicted ICU admission of treatment naïve patients with COVID-19.


COVID-19 , COVID-19/genetics , ErbB Receptors , Gene Expression , Humans , Intensive Care Units , PPAR alpha , Pandemics , Transforming Growth Factor beta
12.
Front Immunol ; 13: 853265, 2022.
Article En | MEDLINE | ID: mdl-35663963

The worldwide COVID-19 pandemic has claimed millions of lives and has had a profound effect on global life. Understanding the body's immune response to SARS-CoV-2 infection is crucial in improving patient management and prognosis. In this study we compared influenza and SARS-CoV-2 infected patient cohorts to identify distinct blood transcript abundances and cellular composition to better understand the natural immune response associated with COVID-19, compared to another viral infection being influenza, and identify a prognostic signature of COVID-19 patient outcome. Clinical characteristics and peripheral blood were acquired upon hospital admission from two well characterised cohorts, a cohort of 88 patients infected with influenza and a cohort of 80 patients infected with SARS-CoV-2 during the first wave of the pandemic and prior to availability of COVID-19 treatments and vaccines. Gene transcript abundances, enriched pathways and cellular composition were compared between cohorts using RNA-seq. A genetic signature between COVID-19 survivors and non-survivors was assessed as a prognostic predictor of COVID-19 outcome. Contrasting immune responses were detected with an innate response elevated in influenza and an adaptive response elevated in COVID-19. Additionally ribosomal, mitochondrial oxidative stress and interferon signalling pathways differentiated the cohorts. An adaptive immune response was associated with COVID-19 survival, while an inflammatory response predicted death. A prognostic transcript signature, associated with circulating immunoglobulins, nucleosome assembly, cytokine production and T cell activation, was able to stratify COVID-19 patients likely to survive or die. This study provides a unique insight into the immune responses of treatment naïve patients with influenza or COVID-19. The comparison of immune response between COVID-19 survivors and non-survivors enables prognostication of COVID-19 patients and may suggest potential therapeutic strategies to improve survival.


COVID-19 , Influenza Vaccines , Influenza, Human , Adaptive Immunity , Humans , Pandemics , SARS-CoV-2
13.
Eur Respir J ; 60(2)2022 08.
Article En | MEDLINE | ID: mdl-34996831

BACKGROUND: Severe asthma is associated with multiple comorbidities, including gastro-oesophageal reflux disease (GORD), which can contribute to exacerbation frequency and poor quality of life. Since epithelial dysfunction is an important feature in asthma, we hypothesised that in severe asthma the bronchial epithelium is more susceptible to the effects of acid reflux. METHODS: We developed an in vitro model of GORD using differentiated bronchial epithelial cells (BECs) from normal or severe asthmatic donors exposed to a combination of pepsin, acid pH and bile acids using a multiple challenge protocol (MCP-PAB). In addition, we analysed bronchial biopsies and undertook RNA sequencing of bronchial brushings from controls and severe asthmatics without or with GORD. RESULTS: Exposure of BECs to the MCP-PAB caused structural disruption, increased permeability, interleukin (IL)-33 expression, inflammatory mediator release and changes in gene expression for multiple biological processes. Cultures from severe asthmatics were significantly more affected than those from healthy donors. Analysis of bronchial biopsies confirmed increased IL-33 expression in severe asthmatics with GORD. RNA sequencing of bronchial brushings from this group identified 15 of the top 37 dysregulated genes found in MCP-PAB treated BECs, including genes involved in oxidative stress responses. CONCLUSIONS AND CLINICAL IMPLICATION: By affecting epithelial permeability, GORD may increase exposure of the airway submucosa to allergens and pathogens, resulting in increased risk of inflammation and exacerbations. These results suggest the need for research into alternative therapeutic management of GORD in severe asthma.


Asthma , Gastroesophageal Reflux , Bronchi/pathology , Epithelium/metabolism , Gastroesophageal Reflux/complications , Humans , Quality of Life , Respiratory Mucosa/metabolism
14.
Antioxid Redox Signal ; 34(7): 517-530, 2021 03 01.
Article En | MEDLINE | ID: mdl-32079408

Significance: Mitochondria represent a major source of intracellular reactive oxygen species (ROS) generation. This is often a consequence of oxidative phosphorylation, which can produce ROS as a result of leakage from the electron transport chain. In addition, quality control mechanisms exist to protect cells from cytotoxic ROS production. One such mechanism is selective autophagic degradation of ROS-producing mitochondria, termed mitophagy, that ultimately results in elimination of mitochondria in the lysosome. Recent Advances: However, while the relationship between mitophagy and ROS production is clearly interwoven, it is yet to be fully untangled. In some circumstances, mitochondrial ROS (mtROS) are elevated as a consequence of mitophagy induction. Critical Issues: In this review, we discuss mtROS generation and their detrimental effects on cellular viability. In addition, we consider the cellular defense mechanisms that the eukaryotic cell uses to abrogate superfluous oxidative stress. In particular, we delve into the prominent mechanisms governing mitophagy induction that bear on oxidative stress. Future Directions: Finally, we examine the pathological conditions associated with defective mitophagy, where additional research may help to facilitate understanding.


Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Animals , Humans , Mitophagy
15.
Biomaterials ; 269: 120222, 2021 02.
Article En | MEDLINE | ID: mdl-32736809

Stem cell fate is largely determined by cellular signaling networks and is heavily dependent on the supplementation of exogenous recombinant proteins into culture media; however, uneven distribution and inconsistent stability of recombinant proteins are closely associated with the spontaneous differentiation of pluripotent stem cells (PSCs) and result in significant costs in large-scale manufacturing. Here, we report a novel PSC culture system via wirelessly controllable optical activation of the fibroblast growth factor (FGF) signaling pathway without the need for supplementation of recombinant FGF2 protein, a key molecule for maintaining pluripotency of PSCs. Using a fusion protein between the cytoplasmic region of the FGF receptor-1 and a light-oxygen-voltage domain, we achieved tunable, blue light-dependent activation of FGF signaling in human and porcine PSCs. Our data demonstrate that a highly controllable optical stimulation of the FGF signaling pathway is sufficient for long-term maintenance of PSCs, without the loss of differentiation potential into three germ layers. This culture system will be a cost-effective platform for a large-scale stem cell culture.


Embryonic Stem Cells , Pluripotent Stem Cells , Animals , Cell Culture Techniques , Cell Differentiation , Humans , Signal Transduction , Swine
16.
Nucleic Acids Res ; 48(17): 9822-9839, 2020 09 25.
Article En | MEDLINE | ID: mdl-32870280

RNA G-quadruplexes (G4s) are secondary structures proposed to function as regulators of post-transcriptional mRNA localisation and translation. G4s within some neuronal mRNAs are known to control distal localisation and local translation, contributing to distinct local proteomes that facilitate the synaptic remodelling attributed to normal cellular function. In this study, we characterise the G4 formation of a (GGN)13 repeat found within the 5' UTR of the potassium 2-pore domain leak channel Task3 mRNA. Biophysical analyses show that this (GGN)13 repeat forms a parallel G4 in vitro exhibiting the stereotypical potassium specificity of G4s, remaining thermostable under physiological ionic conditions. Through mouse brain tissue G4-RNA immunoprecipitation, we further confirm that Task3 mRNA forms a G4 structure in vivo. The G4 is inhibitory to translation of Task3 in vitro and is overcome through activity of a G4-specific helicase DHX36, increasing K+ leak currents and membrane hyperpolarisation in HEK293 cells. Further, we observe that this G4 is fundamental to ensuring delivery of Task3 mRNA to distal primary cortical neurites. It has been shown that aberrant Task3 expression correlates with neuronal dysfunction, we therefore posit that this G4 is important in regulated local expression of Task3 leak channels that maintain K+ leak within neurons.


G-Quadruplexes , Neurons/metabolism , Potassium Channels/genetics , RNA, Messenger/chemistry , 5' Untranslated Regions , Animals , Brain/cytology , Brain/metabolism , Cells, Cultured , HEK293 Cells , Humans , Membrane Potentials , Mice , Mice, Inbred C57BL , Neurons/physiology , Potassium Channels/chemistry , Potassium Channels/metabolism , Protein Transport , RNA, Messenger/genetics
17.
J Allergy Clin Immunol ; 144(1): 70-82, 2019 07.
Article En | MEDLINE | ID: mdl-30928653

BACKGROUND: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. OBJECTIVE: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. METHODS: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. RESULTS: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. CONCLUSION: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies.


Asthma/metabolism , Proteome , Sputum/metabolism , Adult , Aged , Asthma/immunology , Asthma/physiopathology , Biomarkers/metabolism , Eosinophilia/immunology , Eosinophilia/metabolism , Eosinophilia/physiopathology , Eosinophils/immunology , Female , Forced Expiratory Volume , Humans , Male , Middle Aged , Neutrophils/immunology , Phenotype , Proteomics , Young Adult
19.
J Allergy Clin Immunol ; 144(5): 1198-1213, 2019 11.
Article En | MEDLINE | ID: mdl-30998987

BACKGROUND: The role of IL-17 immunity is well established in patients with inflammatory diseases, such as psoriasis and inflammatory bowel disease, but not in asthmatic patients, in whom further study is required. OBJECTIVE: We sought to undertake a deep phenotyping study of asthmatic patients with upregulated IL-17 immunity. METHODS: Whole-genome transcriptomic analysis was performed by using epithelial brushings, bronchial biopsy specimens (91 asthmatic patients and 46 healthy control subjects), and whole blood samples (n = 498) from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. Gene signatures induced in vitro by IL-17 and IL-13 in bronchial epithelial cells were used to identify patients with IL-17-high and IL-13-high asthma phenotypes. RESULTS: Twenty-two of 91 patients were identified with IL-17, and 9 patients were identified with IL-13 gene signatures. The patients with IL-17-high asthma were characterized by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity, and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis the differentially expressed genes in patients with IL-17-high asthma were shared with those reported as altered in psoriasis lesions and included genes regulating epithelial barrier function and defense mechanisms, such as IL1B, IL6, IL8, and ß-defensin. CONCLUSION: The IL-17-high asthma phenotype, characterized by bronchial epithelial dysfunction and upregulated antimicrobial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway, which should be considered a biomarker for this phenotype in further studies, including clinical trials targeting IL-17.


Asthma/immunology , Bronchi/pathology , Epithelial Cells/metabolism , Interleukin-17/metabolism , Neutrophils/immunology , Psoriasis/immunology , Adult , Biomarkers/metabolism , Cohort Studies , Epithelial Cells/pathology , Female , Gene Expression Profiling , Humans , Interleukin-13/metabolism , Male , Phenotype , Signal Transduction , Transcriptome , Up-Regulation
20.
J Proteome Res ; 17(6): 2072-2091, 2018 06 01.
Article En | MEDLINE | ID: mdl-29737851

Analysis of induced sputum supernatant is a minimally invasive approach to study the epithelial lining fluid and, thereby, provide insight into normal lung biology and the pathobiology of lung diseases. We present here a novel proteomics approach to sputum analysis developed within the U-BIOPRED (unbiased biomarkers predictive of respiratory disease outcomes) international project. We present practical and analytical techniques to optimize the detection of robust biomarkers in proteomic studies. The normal sputum proteome was derived using data-independent HDMSE applied to 40 healthy nonsmoking participants, which provides an essential baseline from which to compare modulation of protein expression in respiratory diseases. The "core" sputum proteome (proteins detected in ≥40% of participants) was composed of 284 proteins, and the extended proteome (proteins detected in ≥3 participants) contained 1666 proteins. Quality control procedures were developed to optimize the accuracy and consistency of measurement of sputum proteins and analyze the distribution of sputum proteins in the healthy population. The analysis showed that quantitation of proteins by HDMSE is influenced by several factors, with some proteins being measured in all participants' samples and with low measurement variance between samples from the same patient. The measurement of some proteins is highly variable between repeat analyses, susceptible to sample processing effects, or difficult to accurately quantify by mass spectrometry. Other proteins show high interindividual variance. We also highlight that the sputum proteome of healthy individuals is related to sputum neutrophil levels, but not gender or allergic sensitization. We illustrate the importance of design and interpretation of disease biomarker studies considering such protein population and technical measurement variance.


Proteome/chemistry , Proteomics/methods , Sputum/chemistry , Analysis of Variance , Biomarkers/analysis , Datasets as Topic , Female , Healthy Volunteers , Humans , Male , Mass Spectrometry , Proteins/analysis , Reproducibility of Results
...