Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38722382

RESUMEN

Chimeric antigen receptor (CAR) cell therapies utilize CARs to redirect immune cells towards cancer cells expressing specific antigens like human epidermal growth factor receptor 2 (HER2). Despite their potential, CAR T cell therapies exhibit variable response rates and adverse effects in some patients. Non-invasive molecular imaging can aid in predicting patient outcomes by tracking infused cells post-administration. CAR-T cells are typically autologous, increasing manufacturing complexity and costs. An alternative approach involves developing CAR natural killer (CAR-NK) cells as an off-the-shelf allogeneic product. In this study, we engineered HER2-targeted CAR-NK cells co-expressing the positron emission tomography (PET) reporter gene human sodium-iodide symporter (NIS) and assessed their therapeutic efficacy and PET imaging capability in a HER2 ovarian cancer mouse model.NK-92 cells were genetically modified to express a HER2-targeted CAR, the bioluminescence imaging reporter Antares, and NIS. HER2-expressing ovarian cancer cells were engineered to express the bioluminescence reporter Firefly luciferase (Fluc). Co-culture experiments demonstrated significantly enhanced cytotoxicity of CAR-NK cells compared to naive NK cells. In vivo studies involving mice with Fluc-expressing tumors revealed that those treated with CAR-NK cells exhibited reduced tumor burden and prolonged survival compared to controls. Longitudinal bioluminescence imaging demonstrated stable signals from CAR-NK cells over time. PET imaging using the NIS-targeted tracer 18F-tetrafluoroborate ([18F]TFB) showed significantly higher PET signals in mice treated with NIS-expressing CAR-NK cells.Overall, our study showcases the therapeutic potential of HER2-targeted CAR-NK cells in an aggressive ovarian cancer model and underscores the feasibility of using human-derived PET reporter gene imaging to monitor these cells non-invasively in patients.

2.
Metabolites ; 13(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37512530

RESUMEN

Acidification of cancerous tissue induced pharmacologically may slow tumor growth and can be detected using magnetic resonance imaging. Numerous studies have shown that pharmacologically inhibiting specific transporters, such as the Na+/H+ exchanger 1 (NHE1), can alter glycolitic metabolism and affect tumor acidosis. The sodium proton exchanger inhibitor Cariporide can acidify U87MG gliomas in mice. This study aimed to determine whether Cariporide could acidify C6 glioma tumors in rats with an intact immune system. C6 glioma cells were implanted in the right brain hemisphere of ten rats. Chemical exchange saturation transfer (CEST) MRI (9.4T) was acquired on days 7-8 and 14-15 after implantation to measure in vivo tissue intracellular pH (pHi) within the tumors and on the contralateral side. pHi was basic relative to contralateral tissue at both time points assessed using the amine and amide concentration-independent detection (AACID) value. On day 14-15, measurements were made before and up to 160 min after Cariporide injection (N = 6). Twenty minutes after drug injection, the average AACID value in the tumor significantly increased by ∼6.4% compared to pre-injection, corresponding to 0.31 ± 0.20 lower pHi, while in contralateral tissue, AACID value increased significantly by ∼4.3% compared to pre-injection, corresponding to 0.22 ± 0.19 lower pHi. Control rats without tumors showed no changes following injection of Cariporide dissolved in 10% or 1% DMSO and diluted in PBS. This study demonstrates the sensitivity of CEST-based pH-weighted imaging for monitoring the response of tumors to pharmacologically induced acidification.

3.
J Med Chem ; 66(10): 6567-6576, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37159947

RESUMEN

Five amphiphilic, anionic Mn(II) complexes were synthesized as contrast agents targeted to organic anion transporting polypeptide transporters (OATP) for liver magnetic resonance imaging (MRI). The Mn(II) complexes are synthesized in three steps, each from the commercially available trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) chelator, with T1-relaxivity of complexes ranging between 2.3 and 3.0 mM-1 s-1 in phosphate buffered saline at an applied field strength of 3.0 T. Pharmacokinetics were assessed in female BALB/c mice by acquiring T1-weighted images dynamically for 70 min after agent administration and determining contrast enhancement and washout in various organs. Uptake of Mn(II) complexes in human OATPs was investigated through in vitro assays using MDA-MB-231 cells engineered to express either OATP1B1 or OATP1B3 isoforms. Our study introduces a new class of Mn-based OATP-targeted contrast that can be broadly tuned via simple synthetic protocols.


Asunto(s)
Hígado , Transportadores de Anión Orgánico , Ratones , Animales , Femenino , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Hígado/diagnóstico por imagen , Proteínas de Transporte de Membrana , Imagen por Resonancia Magnética/métodos , Transportadores de Anión Orgánico Sodio-Independiente
4.
Proc Natl Acad Sci U S A ; 120(11): e2216901120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893267

RESUMEN

Cell-cell communication plays a fundamental role in multicellular organisms. Cell-based cancer immunotherapies rely on the ability of innate or engineered receptors on immune cells to engage specific antigens on cancer cells to induce tumor kill. To improve the development and translation of these therapies, imaging tools capable of noninvasively and spatiotemporally visualizing immune-cancer cell interactions would be highly valuable. Using the synthetic Notch (SynNotch) system, we engineered T cells that upon interaction with a chosen antigen (CD19) on neighboring cancer cells induce the expression of optical reporter genes and the human-derived, magnetic resonance imaging (MRI) reporter gene organic anion transporting polypeptide 1B3 (OATP1B3). Administration of engineered T cells induced the antigen-dependent expression of all our reporter genes in mice bearing CD19-positive tumors but not CD19-negative tumors. Notably, due to the high spatial resolution and tomographic nature of MRI, contrast-enhanced foci within CD19-positive tumors representing OATP1B3-expressing T cells were clearly visible and their distribution was readily mapped. We then extended this technology onto human natural killer-92 (NK-92) cells, observing similar CD19-dependent reporter activity in tumor-bearing mice. Furthermore, we show that when delivered intravenously, engineered NK-92 cells can be detected via bioluminescence imaging in a systemic cancer model. With continued work, this highly modular imaging strategy could aid in the monitoring of cell therapies in patients and, beyond this, augment our understanding of how different cell populations interact within the body during normal physiology or disease.


Asunto(s)
Neoplasias , Transportadores de Anión Orgánico , Humanos , Ratones , Animales , Genes Reporteros , Neoplasias/genética , Células Asesinas Naturales , Imagen por Resonancia Magnética/métodos , Transportadores de Anión Orgánico/genética , Línea Celular Tumoral
5.
Nanoscale ; 15(7): 3408-3418, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36722918

RESUMEN

Stem cell-based therapies have demonstrated significant potential in clinical applications for many debilitating diseases. The ability to non-invasively and dynamically track the location and viability of stem cells post administration could provide important information on individual patient response and/or side effects. Multi-modal cell tracking provides complementary information that can offset the limitations of a single imaging modality to yield a more comprehensive picture of cell fate. In this study, mesenchymal stem cells (MSCs) were engineered to express human sodium iodide symporter (NIS), a clinically relevant positron emission tomography (PET) reporter gene, as well as labeled with superparamagnetic iron oxide nanoparticles (SPIOs) to allow for detection with magnetic particle imaging (MPI). MSCs were additionally engineered with a preclinical bioluminescence imaging (BLI) reporter gene for comparison of BLI cell viability data to both MPI and PET data over time. MSCs were implanted into the hind limbs of immunocompromised mice and imaging with MPI, BLI and PET was performed over a 30-day period. MPI showed sensitive detection that steadily declined over the 30-day period, while BLI showed initial decreases followed by later rapid increases in signal. The PET signal of MSCs was significantly higher than the background at later timepoints. Early-phase imaging (day 0-9 post MSC injections) showed correlation between MPI and BLI data (R2 = 0.671), while PET and BLI showed strong correlation for late-phase (day 10-30 post MSC injections) imaging timepoints (R2 = 0.9817). We report the first use of combined MPI and PET for cell tracking and show the complementary benefits of MPI for sensitive detection of MSCs early after implantation and PET for longer-term measurements of cell viability.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratones , Animales , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Tomografía de Emisión de Positrones/métodos , Genes Reporteros , Fenómenos Magnéticos
6.
Pediatr Nephrol ; 38(2): 499-507, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655040

RESUMEN

BACKGROUND: Sodium-23 magnetic resonance imaging (23Na MRI) allows non-invasive assessment of tissue sodium concentration ([Na+]). Age and chronic kidney disease (CKD) are associated with increased tissue [Na+] in adults, but limited information is available pertaining to children and adolescents. We hypothesized that pediatric CKD is associated with altered tissue [Na+] compared to healthy controls. METHODS: This was a case-control exploratory study on healthy children and adults and pediatric CKD patients. Study participants underwent an investigational visit, blood/urine biochemistry, and leg 23Na MRI for tissue [Na+] quantification (whole leg, skin, soleus muscle). CKD was stratified by etiology and patients' tissue [Na+] was compared against healthy controls by computing individual Z-scores. An absolute Z-score > 1.96 was deemed to deviate significantly from the mean of healthy controls. Pearson correlation was used to compute the associations between tissue [Na+] and kidney function. RESULTS: A total of 36 pediatric participants (17 healthy, 19 CKD) and 19 healthy adults completed the study. Healthy adults had significantly higher tissue [Na+] compared with pediatric groups; conversely, no significant differences were found between healthy children/adolescents and CKD patients. Four patients with glomerular disease and one kidney transplant recipient due to atypical hemolytic-uremic syndrome had elevated whole-leg [Na+] Z-scores. Reduced whole-leg [Na+] Z-scores were found in two patients with tubular disorders (Fanconi syndrome, proximal-distal renal tubular acidosis). All tissue [Na+] measures were significantly associated with proteinuria and hypoalbuminemia. CONCLUSIONS: Depending on etiology, pediatric CKD was associated with either increased (glomerular disease) or reduced (tubular disorders) tissue [Na+] compared with healthy controls. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Acidosis Tubular Renal , Insuficiencia Renal Crónica , Adulto , Adolescente , Humanos , Niño , Sodio , Proyectos Piloto , Causalidad , Factores de Riesgo
7.
Cancer Res ; 83(5): 673-685, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36512633

RESUMEN

Metastasis is the leading cause of cancer-related death. However, it remains a poorly understood aspect of cancer biology, and most preclinical cancer studies do not examine metastasis, focusing solely on the primary tumor. One major factor contributing to this paradox is a gap in available tools for accurate spatiotemporal measurements of metastatic spread in vivo. Here, our objective was to develop an imaging reporter system that offers sensitive three-dimensional (3D) detection of cancer cells at high resolutions in live mice. An organic anion-transporting polypeptide 1b3 (oatp1b3) was used as an MRI reporter gene, and its sensitivity was systematically optimized for in vivo tracking of viable cancer cells in a spontaneous metastasis model. Metastases with oatp1b3-MRI could be observed at the single lymph node level and tracked over time as cancer cells spread to multiple lymph nodes and different organ systems in individual animals. While initial single lesions were successfully imaged in parallel via bioluminescence, later metastases were largely obscured by light scatter from the initial node. Importantly, MRI could detect micrometastases in lung tissue comprised on the order of 1,000 cancer cells. In summary, oatp1b3-MRI enables longitudinal tracking of cancer cells with combined high resolution and high sensitivity that provides 3D spatial information and the surrounding anatomical context. SIGNIFICANCE: An MRI reporter gene system optimized for tracking metastasis in deep tissues at high resolutions and able to detect spontaneous micrometastases in lungs of mice provides a useful tool for metastasis research.


Asunto(s)
Neoplasias , Transportadores de Anión Orgánico , Animales , Ratones , Micrometástasis de Neoplasia , Imagen por Resonancia Magnética , Genes Reporteros
8.
Mol Imaging Biol ; 25(2): 271-282, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36418769

RESUMEN

INTRODUCTION: The reliance on glycolytic metabolism is a hallmark of tumor metabolism. Excess acid and protons are produced, leading to an acidic tumor environment. Therefore, we explored the relationship between the tumor glycolytic metabolism and tissue pH by comparing 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and hyperpolarized [1-13C]pyruvate MR spectroscopy imaging (MRSI) to chemical exchange saturation transfer (CEST) MRI measurements of tumor pH. METHODS: 106 C6 glioma cells were implanted in the brains of male Wistar rats (N = 11) using stereotactic surgery. A 60-min PET acquisition after a bolus of FDG was performed at 11-13 days post implantation, and standardized uptake value (SUV) was calculated. CEST measurements were acquired the following day before and during constant infusion of glucose solution. Tumor intracellular pH (pHi) was evaluated using amine and amide concentration-independent detection (AACID) CEST MRI. The change of pHi (∆pHi) was calculated as the difference between pHi pre- and during glucose infusion. Rats were imaged immediately with hyperpolarized [1-13C]pyruvate MRSI. Regional maps of the ratio of Lac:Pyr were acquired. The correlations between SUV, Lac:Pyr ratio, and ∆pHi were evaluated using Pearson's correlation. RESULTS: A decrease of 0.14 in pHi was found after glucose infusion in tumor region. Significant correlations between tumor glycolysis measurements of Lac:Pyr and ∆pHi within the tumor (ρ = 0.83, P = 0.01) and peritumoral region (ρ = 0.76, P = 0.028) were observed. No significant correlations were found between tumor SUV and ∆pHi within the tumor (ρ = - 0.45, P = 0.17) and peritumor regions (ρ = - 0.6, P = 0.051). CONCLUSION: AACID detected the changes in pHi induced by glucose infusion. Significant correlations between tumor glycolytic measurement of Lac:Pyr and tumoral and peritumoral pHi and ∆pHi suggest the intrinsic relationship between tumor glycolytic metabolism and the tumor pH environment as well as the peritumor pH environment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Ratas , Masculino , Animales , Glioblastoma/patología , Neoplasias Encefálicas/patología , Fluorodesoxiglucosa F18 , Glucosa , Concentración de Iones de Hidrógeno , Ratas Wistar , Imagen por Resonancia Magnética/métodos , Glucólisis , Piruvatos
9.
J Med Chem ; 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35852350

RESUMEN

Controversy surrounding gadolinium-based contrast agents (GBCAs) has rendered their continued utility highly contentious, but the liver-specific GBCA Gd(III) ethoxybenzyl-diethylene triamine pentaacetic acid (Gd(III)-EOB-DTPA) remains in use because it provides unique diagnostic information that could not be obtained by any other means. To address the need for an alternate liver-specific MRI probe, we synthesized Mn(III) 20-(4-ethoxyphenyl) porphyrin-5,10,15-tricarboxylate (Mn(III)TriCP-PhOEt), which exhibited significantly higher r1 relaxivity than Gd(III)-EOB-DTPA in vitro, while also targeting hepatocyte-specific organic anion-transporting polypeptide 1 (Oatp1) channels as a marker of viability. In mice, Mn(III)TriCP-PhOEt resulted in significant and specific increases in liver signal intensity on T1-weighted images and significant decreases in liver T1 time relative to pre-contrast measurements. Our findings suggest that Mn(III)TriCP-PhOEt operates as a specific and sensitive MR probe for Oatp1-targeted imaging in vivo.

10.
Clin Kidney J ; 15(6): 1129-1136, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35664280

RESUMEN

Background: Sodium-23 magnetic resonance imaging (23Na MRI) allows the measurement of skin sodium concentration ([Na+]). In patients requiring dialysis, no data are available relating to the clinical outcomes associated with skin sodium accumulation or the determinants of increasing deposition. Methods: This was an exploratory, observational study of adult hemodialysis (HD) and peritoneal dialysis (PD) patients. Participants underwent skin [Na+] quantification with leg 23Na MRI at the study's beginning. Outcomes of interest were all-cause mortality and composite all-cause mortality plus major adverse cardiovascular events. Cumulative total and event-free survival were assessed using the Kaplan-Meier survival function after stratification into skin [Na+] quartiles. Cox proportional hazards regression was used to model the association between skin [Na+] and outcomes of interest. Multiple linear regression was used to model the predictors of skin [Na+]. Results: A total of 52 participants (42 HD and 10 PD) underwent the study procedures. The median follow-up was 529 days (interquartile range: 353-602). Increasing skin [Na+] quartiles were associated with significantly shorter overall and event-free survival (log-rank χ2(1) = 3.926, log-rank χ2(1) = 5.685; P for trend <0.05 in both instances). Skin [Na+] was associated with all-cause mortality {hazard ratio (HR) 4.013, [95% confidence interval (95% CI) 1.988-8.101]; P < 0.001} and composite events [HR 2.332 (95% CI 1.378-3.945); P < 0.01], independently of age, sex, serum [Na+] and albumin. In multiple regression models, dialysate [Na+], serum albumin and congestive heart failure were significantly associated with skin [Na+] in HD patients (R2 adj = 0.62). Conclusions: Higher skin [Na+] was associated with worse clinical outcomes in dialysis patients and may represent a direct therapeutic target.

11.
Mol Imaging Biol ; 24(2): 341-351, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35146614

RESUMEN

PURPOSE: Reporter gene imaging has been extensively used to longitudinally report on whole-body distribution and viability of transplanted engineered cells. Multi-modal cell tracking can provide complementary information on cell fate. Typical multi-modal reporter gene systems often combine clinical and preclinical modalities. A multi-modal reporter gene system for magnetic resonance imaging (MRI) and positron emission tomography (PET), two clinical modalities, would be advantageous by combining the sensitivity of PET with the high-resolution morphology and non-ionizing nature of MRI. PROCEDURES: We developed and evaluated a dual MRI/PET reporter gene system composed of two human-derived reporter genes that utilize clinical reporter probes for engineered cell detection. As a proof-of-concept, breast cancer cells were engineered to co-express the human organic anion transporter polypeptide 1B3 (OATP1B3) that uptakes the clinical MRI contrast agent gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA), and the human sodium iodide symporter (NIS) which uptakes the PET tracer, [18F] tetrafluoroborate ([18F] TFB). RESULTS: T1-weighted MRI results in mice exhibited significantly higher MRI signals in reporter-gene-engineered mammary fat pad tumors versus contralateral naïve tumors (p < 0.05). No differences in contrast enhancement were observed at 5 h after Gd-EOB-DTPA administration using either intravenous or intraperitoneal injection. We also found significantly higher standard uptake values (SUV) in engineered tumors in comparison to the naïve tumors in [18F]TFB PET images (p < 0.001). Intratumoral heterogeneity in signal enhancement was more conspicuous in relatively higher resolution MR images compared to PET images. CONCLUSIONS: Our study demonstrates the ability to noninvasively track cells engineered with our human-derived dual MRI/PET reporter system, enabling a more comprehensive evaluation of transplanted cells. Future work is focused on applying this tool to track therapeutic cells, which may one day enable the broader application of cell tracking within the healthcare system.


Asunto(s)
Rastreo Celular , Gadolinio DTPA , Animales , Medios de Contraste , Genes Reporteros , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Tomografía de Emisión de Positrones/métodos
12.
Radiology ; 303(2): 384-389, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35133199

RESUMEN

Background To the knowledge of the authors, urinary osmolarity is the only tool currently available to assess kidney corticomedullary gradient (CMG). Comparisons between CMG and urinary osmolarity and the use of modalities such as sodium MRI to evaluate renal disease in humans are lacking. Purpose To investigate the ability of sodium MRI to measure CMG dynamics compared with urinary osmolarity after water load in healthy volunteers and CMG in participants with kidney disease. Materials and Methods A prospective study was conducted from July 2020 to January 2021 in fasting healthy volunteers undergoing water load and participants with chronic kidney disease (CKD) from cardiorenal syndrome included in a clinical trial. In both groups, CMG was estimated by measuring the medulla-to-cortex signal ratio from sodium MRI at 3.0 T. A custom-built two-loop (diameter, 18 cm) butterfly radiofrequency surface coil, tuned for sodium frequency (33.786 MHz), was used to acquire renal sodium images. Two independent observers measured all sodium MRI cortical and medullary values for each region of interest to compute the intraclass correlation coefficient. Pearson correlation was performed between urinary osmolarity and CMG. Results Five participants with CKD (mean age, 77 years ± 12 [standard deviation]; all men) and 10 healthy volunteers (mean age, 42 years ± 15; six men, four women) were evaluated. A reduction was observed between baseline and peak urinary dilution time for both mean medulla-to-cortex ratios (1.55 ± 0.11 to 1.31 ± 0.09, respectively; P < .001) and mean urinary osmolarity (756 mOsm/L ± 157 to 73 mOsm/L ± 14, respectively; P < .001) in healthy volunteers. Medulla-to-cortex and corresponding urinary osmolarity were correlated in both groups (r2 = 0.22; P < .001). Kidney sodium tissue content was successfully acquired in all five participants with CKD. The intraclass correlation coefficient measurement was 0.99 (P < .001). Conclusion Functional sodium MRI accurately depicted corticomedullary gradient (CMG) dynamic changes in healthy volunteers and demonstrated feasibility of CMG measurement in participants with reduced kidney function. Clinical trial registration no. NCT04170855. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Laustsen and Bøgh in this issue.


Asunto(s)
Insuficiencia Renal Crónica , Sodio , Adulto , Anciano , Femenino , Humanos , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Estudios Prospectivos , Insuficiencia Renal Crónica/diagnóstico por imagen , Agua
13.
Mol Imaging Biol ; 23(4): 516-526, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33534038

RESUMEN

PURPOSE: Chemical exchange saturation transfer MRI using an infusion of glucose (glucoCEST) is sensitive to the distribution of glucose in vivo; however, whether glucoCEST is more related to perfusion or glycolysis is still debatable. We compared glucoCEST to computed tomography perfusion (CTP), [18F] fluorodeoxyglucose positron emission tomography (FDG-PET), and hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy imaging (MRSI) in a C6 rat model of glioma to determine if glucoCEST is more strongly correlated with measurements of perfusion or glycolysis. METHODS: 106 C6 glioma cells were implanted in Wistar rat brains (n = 11). CTP (including blood volume, BV; blood flow, BF; and permeability surface area product, PS) and FDG-PET standardized uptake value (SUV) were acquired at 11 to 13 days post-surgery. GlucoCEST measurements (∆CEST) were acquired the following day on a 9.4 T MRI before and after an infusion of glucose solution. This was followed by MRSI on a 3.0 T MRI after the injection of hyperpolarized [1-13C] pyruvate to generate regional maps of the lactate:pyruvate ratio (Lac:Pyr). Pearson's correlations between glucoCEST, CTP, FDG-PET, and Lac:Pyr ratio were evaluated. RESULTS: Tumors had significantly higher SUV, BV, and PS than the contralateral brain. Tumor ∆CEST was most strongly correlated with CTP measurements of BV (ρ = 0.74, P = 0.01) and PS (ρ = 0.55, P = 0.04). No significant correlation was found between glycolysis measurements of SUV or Lac:Pyr with tumor ∆CEST. PS significantly correlated with SUV (ρ = 0.58, P = 0.005) and Lac:Pyr (ρ = 0.75, P = 0.005). BV significantly correlated with Lac:Pyr (ρ = 0.57, P = 0.02), and BF significantly correlated with SUV (ρ = 0.49, P = 0.02). CONCLUSION: This study determined that glucoCEST is more strongly correlated to measurements of perfusion than glycolysis. GlucoCEST measurements have additional confounds, such as sensitivity to changing pH, that merit additional investigation.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Glucosa/metabolismo , Ácido Pirúvico/metabolismo , Animales , Apoptosis/fisiología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular/fisiología , Fluorodesoxiglucosa F18 , Glioma/metabolismo , Glioma/patología , Glucólisis , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Imagen Multimodal/métodos , Perfusión , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Ratas , Ratas Wistar , Tomografía Computarizada por Rayos X/métodos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Tomography ; 6(3): 290-300, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32879899

RESUMEN

This study shows the use of hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI) to assess therapeutic efficacy in a preclinical tumor model. 13C-labeled pyruvate was used to monitor early changes in tumor metabolism based on the Warburg effect. High-grade malignant tumors exhibit increased glycolytic activity and lactate production to promote proliferation. A rodent glioma model was used to explore altered lactate production after therapy as an early imaging biomarker for therapeutic response. Rodents were surgically implanted with C6 glioma cells and separated into 4 groups, namely, no therapy, radiotherapy, chemotherapy and combined therapy. Animals were imaged serially at 6 different time points with magnetic resonance imaging at 3 T using hyperpolarized [1-13C]pyruvate MRSI and conventional 1H imaging. Using hyperpolarized [1-13C]pyruvate MRSI, alterations in tumor metabolism were detected as changes in the conversion of lactate to pyruvate (measured as Lac/Pyr ratio) and compared with the conventional method of detecting therapeutic response using the Response Evaluation Criteria in Solid Tumors. Moreover, each therapy group expressed different characteristic changes in tumor metabolism. The group that received no therapy showed a gradual increase of Lac/Pyr ratio within the tumor. The radiotherapy group showed large variations in tumor Lac/Pyr ratio. The chemo- and combined-therapy groups showed a statistically significant reduction in tumor Lac/Pyr ratio; however, only combined therapy was capable of suppressing tumor growth, which resulted in low endpoint mortality rate. Hyperpolarized 13C MRSI detected a prompt reduction in Lac/Pyr ratio as early as 2 days post combined chemo- and radiotherapies.


Asunto(s)
Glioma , Animales , Glioma/diagnóstico por imagen , Glioma/tratamiento farmacológico , Glucólisis , Ácido Láctico , Imagen por Resonancia Magnética , Ácido Pirúvico
15.
J Vis Exp ; (151)2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31566618

RESUMEN

The fundamental limit to in vivo imaging applications of hyperpolarized 13C-enriched compounds is their finite spin-lattice relaxation times. Various factors affect the relaxation rates, such as buffer composition, solution pH, temperature, and magnetic field. In this last regard, the spin-lattice relaxation time can be measured at clinical field strengths, but at lower fields, where these compounds are dispensed from the polarizer and transported to the MRI, the relaxation is even faster and difficult to measure. To have a better understanding of the amount of magnetization lost during transport, we used fast field-cycling relaxometry, with magnetic resonance detection of 13C nuclei at ~0.75 T, to measure the nuclear magnetic resonance dispersion of the spin-lattice relaxation time of hyperpolarized [1-13C]pyruvate. Dissolution dynamic nuclear polarization was used to produce hyperpolarized samples of pyruvate at a concentration of 80 mmol/L and physiological pH (~7.8). These solutions were rapidly transferred to a fast field-cycling relaxometer so that relaxation of the sample magnetization could be measured as a function of time using a calibrated small flip angle (3°-5°). To map the T1 dispersion of the C-1 of pyruvate, we recorded data for different relaxation fields ranging between 0.237 mT and 0.705 T. With this information, we determined an empirical equation to estimate the spin-lattice relaxation of the hyperpolarized substrate within the mentioned range of magnetic fields. These results can be used to predict the amount of magnetization lost during transport and to improve experimental designs to minimize signal loss.


Asunto(s)
Isótopos de Carbono , Campos Magnéticos , Espectroscopía de Resonancia Magnética/métodos , Ácido Pirúvico/análisis , Tampones (Química) , Calibración , Concentración de Iones de Hidrógeno , Magnetismo , Procesamiento de Señales Asistido por Computador , Programas Informáticos , Temperatura
16.
eNeuro ; 6(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809587

RESUMEN

The consolidation of newly formed memories and their retrieval are energetically demanding processes. Aerobic glycolysis (AG), also known as the Warburg effect, consists of the production of lactate from glucose in the presence of oxygen. The astrocyte neuron lactate shuttle hypothesis posits that astrocytes process glucose by AG to generate lactate, which is used as a fuel source within neurons to maintain synaptic activity. Studies in mice have demonstrated that lactate transport between astrocytes and neurons is required for long-term memory formation, yet the role of lactate production in memory acquisition and retrieval has not previously been explored. Here, we examined the effect of dichloroacetate (DCA), a chemical inhibitor of lactate production, on spatial learning and memory in mice using the Morris water maze (MWM). In vivo hyperpolarized 13C-pyruvate magnetic resonance spectroscopy revealed decreased conversion of pyruvate to lactate in the mouse brain following DCA administration, concomitant with a reduction in the phosphorylation of pyruvate dehydrogenase. DCA exposure before each training session in the MWM impaired learning, which subsequently resulted in impaired memory during the probe trial. In contrast, mice that underwent training without DCA exposure, but received a single DCA injection before the probe trial exhibited normal memory. Our findings indicate that AG plays a key role during memory acquisition but is less important for the retrieval of established memories. Thus, the activation of AG may be important for learning-dependent synaptic plasticity rather than the activation of signaling cascades required for memory retrieval.


Asunto(s)
Encéfalo/metabolismo , Glucólisis , Recuerdo Mental/fisiología , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Fármacos del Sistema Nervioso Central/farmacología , Ácido Dicloroacético/farmacología , Glucólisis/efectos de los fármacos , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Recuerdo Mental/efectos de los fármacos , Ratones Endogámicos C57BL , Ácido Pirúvico/metabolismo , Aprendizaje Espacial/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
17.
Invest Radiol ; 54(5): 302-311, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30672844

RESUMEN

OBJECTIVES: Multimodality reporter gene imaging provides valuable, noninvasive information on the fate of engineered cell populations. To complement magnetic resonance imaging (MRI) measures of tumor volume and 2-dimensional reporter-based optical measures of cell viability, reporter-based MRI may offer 3-dimensional information on the distribution of viable cancer cells in deep tissues. MATERIALS AND METHODS: Here, we engineered human and murine triple-negative breast cancer cells with lentivirus encoding tdTomato and firefly luciferase for fluorescence imaging and bioluminescence imaging (BLI). A subset of these cells was additionally engineered with lentivirus encoding organic anion transporting polypeptide 1a1 (Oatp1a1) for MRI. Oatp1a1 operates by transporting gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) into cells, and it concomitantly improves BLI substrate uptake. After orthotopic implantation of engineered cells expressing or not expressing Oatp1a1, longitudinal fluorescence imaging, BLI, and 3-Tesla MRI were performed. RESULTS: Oatp1a1-expressing tumors displayed significantly increased BLI signals relative to control tumors at all time points (P < 0.05). On MRI, post-Gd-EOB-DTPA T1-weighted images of Oatp1a1-expressing tumors exhibited significantly increased contrast-to-noise ratios compared with control tumors and precontrast images (P < 0.05). At endpoint, tumors expressing Oatp1a1 displayed intratumoral MR signal heterogeneity not present at earlier time points. Pixel-based analysis of matched in vivo MR and ex vivo fluorescence microscopy images revealed a strong, positive correlation between MR intensity and tdTomato intensity for Oatp1a1-expressing tumors (P < 0.05), but not control tumors. CONCLUSIONS: These results characterize Oatp1a1 as a sensitive, quantitative, positive contrast MRI reporter gene for 3-dimensional assessment of viable cancer cell intratumoral distribution and concomitant BLI enhancement. This multimodality reporter gene system can provide new insights into the influence of viable cancer cell intratumoral distribution on tumor progression and metastasis, as well as improved assessments of anticancer therapies.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Medios de Contraste , Gadolinio DTPA , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Transportadores de Anión Orgánico/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Imagenología Tridimensional/métodos , Ratones , Microscopía Fluorescente
18.
Radiol Imaging Cancer ; 1(2): e190035, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-33778683

RESUMEN

Purpose: To develop a photoacoustic imaging (PAI) reporter gene that has high translational potential. Previous research has shown that human organic anion-transporting polypeptide 1b3 (OATP1B3) promotes the uptake of the near-infrared fluorescent dye indocyanine green (ICG). In this study, the authors have established OATP1B3 and ICG as a reporter gene-probe pair for in vivo PAI. Materials and Methods: Human breast cancer cells were engineered to express OATP1B3. Control cells (not expressing OATP1B3) or OATP1B3-expressing cells were incubated with or without ICG, placed in a breast-mimicking phantom, and imaged with PAI. Control (n = 6) or OATP1B3-expressing (n = 5) cells were then implanted orthotopically into female mice. Full-spectrum PAI was performed before and 24 hours after ICG administration. One-way analysis of variance was performed, followed by Tukey posthoc multiple comparisons, to assess statistical significance. Results: OATP1B3-expressing cells incubated with ICG exhibited a 2.7-fold increase in contrast-to-noise ratio relative to all other controls in vitro (P < .05). In mice, PAI signals after ICG administration were increased 2.3-fold in OATP1B3 tumors relative to those in controls (P < .05). Conclusion: OATP1B3 operates as an in vivo PAI reporter gene based on its ability to promote the cellular uptake of ICG. Benefits include the human derivation of OATP1B3, combined with the use of wavelengths in the near-infrared region, high extinction coefficient, low quantum yield, and clinical approval of ICG. The authors posit that this system will be useful for localized monitoring of emerging gene- and cell-based therapies in clinical applications.© RSNA, 2019Keywords: Animal Studies, Molecular Imaging, Molecular Imaging-Clinical Translation, Molecular Imaging-Reporter Gene Imaging, Optical ImagingSupplemental material is available for this article.


Asunto(s)
Neoplasias de la Mama/metabolismo , Colorantes/metabolismo , Genes Reporteros , Verde de Indocianina/metabolismo , Técnicas Fotoacústicas/métodos , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/genética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Análisis de Varianza , Animales , Ingeniería Celular/métodos , Línea Celular Tumoral , Femenino , Humanos , Ratones , Imagen Óptica/métodos
19.
Magn Reson Imaging ; 57: 40-49, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30394298

RESUMEN

OBJECT: The research follows the analysis of gellan gum-based gels as novel MRI phantom material with the implementation of a design of experiments model to obtain tunable relaxation properties. MATERIALS AND METHODS: Gellan gum gels doped with newly synthesized superparamagnetic iron oxide nanoparticles (SPIONs) and either MnCl2 or GdCl3 were prepared and scanned from 230 µT to 3 T. Nineteen gel samples were formulated with varying concentrations of contrast agents to determine the linear, quadratic, and interactive effects of the contrast agents by a central composite design of experiment. To inhibit microbial growth in the gels and to enable long-term use, methyl 4­hydroxybenzoate (methylparaben) was utilized. RESULTS: The model containing SPIONs and metal salts relaxivity was analyzed with ANOVA, and the resulting significant coefficients were tabulated. The mathematical model was able to accurately predict the intended relaxation property from the concentration of the contrast agent with adjusted R2 values > 0.97 for longitudinal (R1) relaxation rates and 0.87 for transverse (R2) relaxation rates. CONCLUSION: The gel material maintained physical, chemical, and biological stability for at least four months and contained controllable relaxation properties while maintaining optical clarity.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética , Fantasmas de Imagen , Polisacáridos Bacterianos/química , Compuestos Férricos/química , Geles , Humanos , Campos Magnéticos , Espectroscopía de Resonancia Magnética , Nanopartículas de Magnetita/química , Nanopartículas del Metal/química , Parabenos/química , Tamaño de la Partícula , Análisis de Regresión , Temperatura
20.
J Magn Reson Imaging ; 49(5): 1409-1419, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30430700

RESUMEN

BACKGROUND: Overtreatment of prostate cancer (PCa) is a healthcare issue. Development of noninvasive imaging tools for improved characterization of prostate lesions might reduce overtreatment. PURPOSE: To measure the distribution of tissue sodium concentration (TSC), proton T2 -weighted signal, and apparent diffusion coefficient (ADC) values in human PCa and to test the presence of a correlation between regional differences in imaging metrics and the Gleason grade of lesions determined from histopathology. STUDY TYPE: Cross-sectional. SUBJECTS: Ten men with biopsy-proven PCa. SEQUENCES/FIELD STRENGTH: Sodium, proton T2 -weighted, and diffusion-weighted MRI data were acquired using Broad-Band 3D-Fast-Gradient-Recalled, 3D Cube (Isotropic 3D-Fast-Turbo-Spin-Echo acquisition) and 2D Spin-Echo sequences, respectively, with a 3.0T MR scanner. ASSESSMENT: All imaging data were coregistered to Gleason-graded postprostatectomy histology, as the standard for prostate cancer lesion characterization. Regional TSC and T2 data were assessed using percent changes from healthy tissue of the same patient (denoted ΔTSC, ΔT2 ). STATISTICS: Differences in ΔTSC, ADC, and ΔT2 as a function of Gleason score were analyzed for each imaging contrast using a one-way analysis of variance or a nonparametric t-test. Correlations between imaging data measures and Gleason score were assessed using a Spearman's ranked correlation. RESULTS: Evaluation of the correlation of ΔTSC, ADC, and ΔT2 datasets with Gleason scoring revealed that only the correlation between ΔTSC and Gleason score was statistically significant (rs = 0.791, p < 0.01), whereas the correlations of ADC and ΔT2 with Gleason score were not (rs = -0.306, p = 0.079 and r s = -0.069, p = 0.699, respectively). In addition, all individual patients showed monotonically increasing ΔTSC with Gleason score. DATA CONCLUSION: The results of this preliminary study suggest that changes in TSC, assessed by sodium MRI, has utility as a noninvasive imaging assay to accurately characterize PCa lesions. Sodium MRI may provide useful complementary information on mpMRI, which may assist the decision-making of men choosing either active surveillance or treatment. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1409-1419.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Estudios Transversales , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...