Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(11): 8383-8391, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38437520

RESUMEN

Two-dimensional van der Waals (vdW) heterostructures are an attractive platform for studying exchange bias due to their defect-free and atomically flat interfaces. Chromium thiophosphate (CrPS4), an antiferromagnetic material, possesses uncompensated magnetic spins in a single layer, rendering it a promising candidate for exploring exchange bias phenomena. Recent findings have highlighted that naturally oxidized vdW ferromagnetic Fe3GeTe2 exhibits exchange bias, attributed to the antiferromagnetic coupling of its ultrathin surface oxide layer (O-FGT) with the underlying unoxidized Fe3GeTe2. Anomalous Hall measurements are employed to scrutinize the exchange bias within the CrPS4/(O-FGT)/Fe3GeTe2 heterostructure. This analysis takes into account the contributions from both the perfectly uncompensated interfacial CrPS4 layer and the interfacial oxide layer. Intriguingly, a distinct and nonmonotonic exchange bias trend is observed as a function of temperature below 140 K. The occurrence of exchange bias induced by a "preset field" implies that the prevailing phase in the polycrystalline surface oxide is ferrimagnetic Fe3O4. Moreover, the exchange bias induced by the ferrimagnetic Fe3O4 is significantly modulated by the presence of the van der Waals antiferromagnetic CrPS4 layer, forming a heterostructure, along with additional iron oxide phases within the oxide layer. These findings underscore the intricate and complex nature of exchange bias in van der Waals heterostructures, highlighting their potential for tailored manipulation and control.

2.
Nano Lett ; 23(22): 10126-10131, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37955345

RESUMEN

Magnetism in reduced dimensionalities is of great fundamental interest while also providing perspectives for applications of materials with novel functionalities. In particular, spin dynamics in two dimensions (2D) have become a focus of recent research. Here, we report the observation of coherent propagating spin-wave dynamics in a ∼30 nm thick flake of 2D van der Waals ferromagnet Fe5GeTe2 using X-ray microscopy. Both phase and amplitude information were obtained by direct imaging below TC for frequencies from 2.77 to 3.84 GHz, and the corresponding spin-wave wavelengths were measured to be between 1.5 and 0.5 µm. Thus, parts of the magnonic dispersion relation were determined despite a relatively high magnetic damping of the material. Numerically solving an analytic multilayer model allowed us to corroborate the experimental dispersion relation and predict the influence of changes in the saturation magnetization or interlayer coupling, which could be exploited in future applications by temperature control or stacking of 2D-heterostructures.

3.
Inorg Chem ; 62(27): 10655-10664, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37382207

RESUMEN

The structure of the first lithium-containing bismuth ortho (o)-thiophosphate was determined using a combination of powder X-ray, neutron, and electron diffraction. Li60-3xBi16+x(PS4)36 with x in the range of 4.1-6.5 possesses a complex monoclinic structure [space group C2/c (No. 15)] and a large unit cell with the lattice parameters a = 15.4866 Å, b = 10.3232 Å, c = 33.8046 Å, and ß = 85.395° for Li44.4Bi21.2(PS4)36, in agreement with the structure as observed by X-ray and neutron pair distribution function analysis. The disordered distribution of lithium ions within the interstices of the dense host structure and the Li ion dynamics and diffusion pathways have been investigated by solid-state nuclear magnetic resonance (NMR) spectroscopy, pulsed field gradient NMR diffusion measurements, and bond valence sum calculations. The total lithium ion conductivities range from 2.6 × 10-7 to 2.8 × 10-6 S cm-1 at 20 °C with activation energies between 0.29 and 0.32 eV, depending on the bismuth content. Despite the highly disordered nature of lithium ions in Li60-3xBi16+x(PS4)36, the underlying dense host framework appears to limit the dimensionality of the lithium diffusion pathways and emphasizes once more the necessity of a close inspection of the structure-property relationships in solid electrolytes.

4.
Nano Lett ; 22(23): 9236-9243, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36400013

RESUMEN

Skyrmions have been well studied in chiral magnets and magnetic thin films due to their potential application in practical devices. Recently, monochiral skyrmions have been observed in two-dimensional van der Waals magnets. Their atomically flat surfaces and capability to be stacked into heterostructures offer new prospects for skyrmion applications. However, the controlled local nucleation of skyrmions within these materials has yet to be realized. Here, we utilize real-space X-ray microscopy to investigate a heterostructure composed of the 2D ferromagnet Fe3GeTe2 (FGT), an insulating hexagonal boron nitride layer, and a graphite top electrode. Upon a stepwise increase of the voltage applied between the graphite and FGT, a vertically conducting pathway can be formed. This nanocontact allows the tunable creation of individual skyrmions via single nanosecond pulses of low current density. Furthermore, time-resolved magnetic imaging highlights the stability of the nanocontact, while our micromagnetic simulations reproduce the observed skyrmion nucleation process.

5.
ACS Energy Lett ; 7(4): 1403-1411, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35434367

RESUMEN

Sodium thiophosphates are promising materials for large-scale energy storage applications benefiting from high ionic conductivities and the geopolitical abundance of the elements. A representative of this class is Na4P2S6, which currently shows two known polymorphs-α and ß. This work describes a third polymorph of Na4P2S6, γ, that forms above 580 °C, exhibits fast-ion conduction with low activation energy, and is mechanically soft. Based on high-temperature diffraction, pair distribution function analysis, thermal analysis, impedance spectroscopy, and ab initio molecular dynamics calculations, the γ-Na4P2S6 phase is identified to be a plastic crystal characterized by dynamic orientational disorder of the P2S6 4- anions translationally fixed on a body-centered cubic lattice. The prospect of stabilizing plastic crystals at operating temperatures of solid-state batteries, with benefits from their high ionic conductivities and mechanical properties, could have a strong impact in the field of solid-state battery research.

6.
Inorg Chem ; 60(20): 15069-15077, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34612627

RESUMEN

A new class of materials, melaminate salts of potassium and rubidium, has been obtained by deprotonating molecular melamine in liquid ammonia. Potassium melaminate KC3N6H5·NH3 and rubidium melaminate RbC3N6H5·1/2NH3 were characterized by single-crystal XRD, showing that the melaminate anion is slightly distorted compared to the neutral molecule due to the ionic imine group, but it still forms extensive hydrogen bonding networks. The melaminate anion also displays an increased coordination ability of µ4 and µ6+1 (the maximum for melamine is µ3). Thermal gravimetry coupled with mass spectrometry evidence a multistep decomposition with liberation of ammonia first and then cyanamide and larger fragments. A plausible decomposition mechanism is proposed. The infrared spectrum allows to identify the fingerprint of the melaminate vibrations such as to partially characterize the also synthesized amorphous sodium melaminate NaC3N6H5·nNH3 and the proposed tripotassium melaminate K3C3N6H3.

7.
Nat Commun ; 12(1): 3099, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035286

RESUMEN

Porphyrin-based metal-organic frameworks (MOFs), exemplified by MOF-525, PCN-221, and PCN-224, are promising systems for catalysis, optoelectronics, and solar energy conversion. However, subtle differences between synthetic protocols for these three MOFs give rise to vast discrepancies in purported product outcomes and description of framework topologies. Here, based on a comprehensive synthetic and structural analysis spanning local and long-range length scales, we show that PCN-221 consists of Zr6O4(OH)4 clusters in four distinct orientations within the unit cell, rather than Zr8O6 clusters as originally published, and linker vacancies at levels of around 50%, which may form in a locally correlated manner. We propose disordered PCN-224 (dPCN-224) as a unified model to understand PCN-221, MOF-525, and PCN-224 by varying the degree of orientational cluster disorder, linker conformation and vacancies, and cluster-linker binding. Our work thus introduces a new perspective on network topology and disorder in Zr-MOFs and pinpoints the structural variables that direct their functional properties.

8.
ACS Cent Sci ; 5(5): 750-752, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31139710
9.
Inorg Chem ; 54(17): 8800-7, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26287437

RESUMEN

We report a synthetic and theoretical study of the solid solution Sn(x)Fe(4-x)N (0 ≤ x ≤ 0.9). A previously published ammonolytic synthesis was successfully modified to achieve the metastable nitrides in phase-pure quality out of many competing phases. As TG-DSC measurements show, the thermal stability of the nitrides increases with increasing tin content. The Sn(x)Fe(4-x)N series of compounds adopts an antiperovskite-like structure in space group Pm3̅m. Various experimental and theoretical methods provide evidence that the iron substitution by tin exclusively takes place at Wyckoff position 1a and leads to a Vegard-type behavior of the lattice parameter over the compositional range, with an expection for a small internal miscibility gap around Sn(0.33)Fe(3.67)N of unknown cause. For highly tin-substituted iron nitrides the composition was clarified by prompt gamma-ray activation analysis (PGAA) and determined as Sn(0.78(3))Fe(3.22(4))N(0.95(3)) evidencing a fully occupied nitrogen position. Magnetic measurements reveal a linear weakening of ferromagnetic interactions with increasing tin concentration.

10.
ACS Appl Mater Interfaces ; 4(5): 2455-63, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22489739

RESUMEN

The deposition of a thin film layer by plasma polymerization enables the surface functionalization of a wide range of substrate materials for biointerfacial interactions. Plasma polymers can surface-bind proteins specifically via covalent linkages or nonspecifically through other irreversible adsorption mechanisms; key questions are whether covalent chemisorption has indeed occurred, and whether the protein retains functionality. Here the mode of surface binding of streptavidin and the biotin binding functionality of the bound streptavidin layer are studied on plasma polymer (pp) surfaces deposited using propionaldehyde and ethanol that were plasma polymerized at different powers (P) to investigate possible mechanisms for protein binding to a range of different surface chemistries. As expected, with pp surfaces composed principally of aldehyde groups, protein conjugation appears to be specific (chemisorption) allowing the immobilization of streptavidin (SAV) molecules retaining the ability to bind biotinylated probes. To contrast with this, we present the first study of protein adsorption to ethanol pp surfaces prepared at different P. This provides an investigation into retention of the hydroxyl functionality in the pp at low P and its effect on protein adsorption. Adsorption of human serum albumin (HSA) to ethanol pp was similar to that on propionaldehyde pp except at low P (5 W) where hydroxyl group retention and hydration presumably has a role in reducing protein adsorption. Although we observed SAV adsorption to ethanol pp surfaces at all P, interestingly, the protein lost its ability to bind biotinylated probes. Thus we suggest that irreversible, nonspecific adsorption of protein on ethanol pp surfaces results in apparent protein denaturation despite the hydrophilic nature of the ethanol pp surface. We conclude by making inferences between the pp structure as measured by X-ray photoelectron spectroscopy (XPS) and the related protein adsorption mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...