Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 220(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37115585

RESUMEN

The first immune-activating changes within joint resident cells that lead to pathogenic leukocyte recruitment during articular inflammation remain largely unknown. In this study, we employ state-of-the-art confocal microscopy and image analysis in a systemic, whole-organ, and quantitative way to present evidence that synovial inflammation begins with the activation of lining macrophages. We show that lining, but not sublining macrophages phagocytose immune complexes containing the model antigen. Using the antigen-induced arthritis (AIA) model, we demonstrate that on recognition of antigen-antibody complexes, lining macrophages undergo significant activation, which is dependent on interferon regulatory factor 5 (IRF5), and produce chemokines, most notably CXCL1. Consequently, at the onset of inflammation, neutrophils are preferentially recruited in the vicinity of antigen-laden macrophages in the synovial lining niche. As inflammation progresses, neutrophils disperse across the whole synovium and form swarms in synovial sublining during resolution. Our study alters the paradigm of lining macrophages as immunosuppressive cells to important instigators of synovial inflammation.


Asunto(s)
Artritis , Humanos , Infiltración Neutrófila , Artritis/patología , Macrófagos , Membrana Sinovial/patología , Inflamación/patología , Antígenos
2.
J Exp Med ; 219(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35238865

RESUMEN

Eosinophils are potent sources of inflammatory and toxic mediators, yet they reside in large numbers in the healthy intestine without causing tissue damage. We show here that intestinal eosinophils were specifically adapted to their environment and underwent substantial transcriptomic changes. Intestinal eosinophils upregulated genes relating to the immune response, cell-cell communication, extracellular matrix remodeling, and the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor with broad functions in intestinal homeostasis. Eosinophils from AHR-deficient mice failed to fully express the intestinal gene expression program, including extracellular matrix organization and cell junction pathways. AHR-deficient eosinophils were functionally impaired in the adhesion to and degradation of extracellular matrix, were more prone to degranulation, and had an extended life span. Lack of AHR in eosinophils had wider effects on the intestinal immune system, affecting the T cell compartment in nave and helminth-infected mice. Our study demonstrates that the response to environmental triggers via AHR partially shapes tissue adaptation of eosinophils in the small intestine.


Asunto(s)
Eosinófilos , Receptores de Hidrocarburo de Aril , Animales , Eosinófilos/metabolismo , Homeostasis , Intestino Delgado , Ratones , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril/metabolismo
3.
Rheumatology (Oxford) ; 61(3): 913-925, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34559213

RESUMEN

Despite extensive research, there is still no treatment that would lead to remission in all patients with rheumatoid arthritis as our understanding of the affected site, the synovium, is still incomplete. Recently, single-cell technologies helped to decipher the cellular heterogeneity of the synovium; however, certain synovial cell populations, such as endothelial cells or peripheral neurons, remain to be profiled on a single-cell level. Furthermore, associations between certain cellular states and inflammation were found; whether these cells cause the inflammation remains to be answered. Similarly, cellular zonation and interactions between individual effectors in the synovium are yet to be fully determined. A deeper understanding of cell signalling and interactions in the synovium is crucial for a better design of therapeutics with the goal of complete remission in all patients.


Asunto(s)
Artritis Reumatoide/patología , Membrana Sinovial/citología , Linfocitos B/fisiología , Comunicación Celular/fisiología , Células Endoteliales/fisiología , Fibroblastos/fisiología , Heterogeneidad Genética , Granulocitos/fisiología , Humanos , Macrófagos/fisiología , Sistema Nervioso Periférico/citología , Fagocitos/fisiología , Transducción de Señal/fisiología , Análisis de la Célula Individual , Linfocitos T/fisiología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA