Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Eur J Hum Genet ; 32(3): 350-356, 2024 Mar.
Article En | MEDLINE | ID: mdl-38200082

Numerous contiguous gene deletion syndromes causing neurodevelopmental disorders have previously been defined using cytogenetics for which only in the current genomic era the disease-causing genes have become elucidated. One such example is deletion at Xq22.2, previously associated with a neurodevelopmental disorder which has more recently been found to be caused by de novo loss-of-function variants in TCEAL1. So far, a single study reported six unrelated individuals with this monogenetic disorder, presenting with syndromic features including developmental delay especially affecting expressive speech, intellectual disability, autistic-like behaviors, hypotonia, gait abnormalities and mild facial dysmorphism, in addition to ocular, gastrointestinal, and immunologic abnormalities. Here we report on four previously undescribed individuals, including two adults, with de novo truncating variants in TCEAL1, identified through trio exome or genome sequencing, further delineating the phenotype of the TCEAL1-related disorder. Whereas overall we identify similar features compared to the original report, we also highlight features in our adult individuals including hyperphagia, obesity, and endocrine abnormalities including hyperinsulinemia, hyperandrogenemia, and polycystic ovarian syndrome. X chromosome inactivation and RNA-seq studies further provide functional insights in the molecular mechanisms. Together this report expands the phenotypic and molecular spectrum of the TCEAL1-related disorder which will be useful for counseling of newly identified individuals and their families.


Autistic Disorder , Intellectual Disability , Neurodevelopmental Disorders , Adult , Female , Humans , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Autistic Disorder/genetics , Base Sequence , Phenotype , DNA-Binding Proteins/genetics , Transcription Factors/genetics
2.
Hum Genet ; 142(7): 949-964, 2023 Jul.
Article En | MEDLINE | ID: mdl-37198333

The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.


Autism Spectrum Disorder , Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Humans , Cysteine/genetics , Neurodevelopmental Disorders/genetics , Cell Cycle Proteins/genetics , DNA Helicases/genetics , Microcephaly/genetics , Phenotype , Zinc , Intellectual Disability/genetics , Minichromosome Maintenance Complex Component 6/genetics
3.
Circulation ; 147(17): 1291-1303, 2023 04 25.
Article En | MEDLINE | ID: mdl-36970983

BACKGROUND: During cardiomyocyte maturation, the centrosome, which functions as a microtubule organizing center in cardiomyocytes, undergoes dramatic structural reorganization where its components reorganize from being localized at the centriole to the nuclear envelope. This developmentally programmed process, referred to as centrosome reduction, has been previously associated with cell cycle exit. However, understanding of how this process influences cardiomyocyte cell biology, and whether its disruption results in human cardiac disease, remains unknown. We studied this phenomenon in an infant with a rare case of infantile dilated cardiomyopathy (iDCM) who presented with left ventricular ejection fraction of 18% and disrupted sarcomere and mitochondria structure. METHODS: We performed an analysis beginning with an infant who presented with a rare case of iDCM. We derived induced pluripotent stem cells from the patient to model iDCM in vitro. We performed whole exome sequencing on the patient and his parents for causal gene analysis. CRISPR/Cas9-mediated gene knockout and correction in vitro were used to confirm whole exome sequencing results. Zebrafish and Drosophila models were used for in vivo validation of the causal gene. Matrigel mattress technology and single-cell RNA sequencing were used to characterize iDCM cardiomyocytes further. RESULTS: Whole exome sequencing and CRISPR/Cas9 gene knockout/correction identified RTTN, the gene encoding the centrosomal protein RTTN (rotatin), as the causal gene underlying the patient's condition, representing the first time a centrosome defect has been implicated in a nonsyndromic dilated cardiomyopathy. Genetic knockdowns in zebrafish and Drosophila confirmed an evolutionarily conserved requirement of RTTN for cardiac structure and function. Single-cell RNA sequencing of iDCM cardiomyocytes showed impaired maturation of iDCM cardiomyocytes, which underlie the observed cardiomyocyte structural and functional deficits. We also observed persistent localization of the centrosome at the centriole, contrasting with expected programmed perinuclear reorganization, which led to subsequent global microtubule network defects. In addition, we identified a small molecule that restored centrosome reorganization and improved the structure and contractility of iDCM cardiomyocytes. CONCLUSIONS: This study is the first to demonstrate a case of human disease caused by a defect in centrosome reduction. We also uncovered a novel role for RTTN in perinatal cardiac development and identified a potential therapeutic strategy for centrosome-related iDCM. Future study aimed at identifying variants in centrosome components may uncover additional contributors to human cardiac disease.


Cardiomyopathy, Dilated , Female , Pregnancy , Animals , Humans , Cardiomyopathy, Dilated/genetics , Zebrafish , Stroke Volume , Ventricular Function, Left , Centrosome/metabolism , Myocytes, Cardiac
4.
Brain ; 146(8): 3528-3541, 2023 08 01.
Article En | MEDLINE | ID: mdl-36732302

Biallelic loss-of-function variants in SMPD4 cause a rare and severe neurodevelopmental disorder with progressive congenital microcephaly and early death. SMPD4 encodes a sphingomyelinase that hydrolyses sphingomyelin into ceramide at neutral pH and can thereby affect membrane lipid homeostasis. SMPD4 localizes to the membranes of the endoplasmic reticulum and nuclear envelope and interacts with nuclear pore complexes (NPC). We refine the clinical phenotype of loss-of-function SMPD4 variants by describing five individuals from three unrelated families with longitudinal data due to prolonged survival. All individuals surviving beyond infancy developed insulin-dependent diabetes, besides presenting with a severe neurodevelopmental disorder and microcephaly, making diabetes one of the most frequent age-dependent non-cerebral abnormalities. We studied the function of SMPD4 at the cellular and organ levels. Knock-down of SMPD4 in human neural stem cells causes reduced proliferation rates and prolonged mitosis. Moreover, SMPD4 depletion results in abnormal nuclear envelope breakdown and reassembly during mitosis and decreased post-mitotic NPC insertion. Fibroblasts from affected individuals show deficient SMPD4-specific neutral sphingomyelinase activity, without changing (sub)cellular lipidome fractions, which suggests a local function of SMPD4 on the nuclear envelope. In embryonic mouse brain, knockdown of Smpd4 impairs cortical progenitor proliferation and induces premature differentiation by altering the balance between neurogenic and proliferative progenitor cell divisions. We hypothesize that, in individuals with SMPD4-related disease, nuclear envelope bending, which is needed to insert NPCs in the nuclear envelope, is impaired in the absence of SMPD4 and interferes with cerebral corticogenesis and survival of pancreatic beta cells.


Diabetes Mellitus , Microcephaly , Humans , Animals , Mice , Nuclear Envelope/chemistry , Nuclear Envelope/metabolism , Microcephaly/genetics , Microcephaly/metabolism , Sphingomyelin Phosphodiesterase/analysis , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Nuclear Pore/metabolism , Mitosis , Diabetes Mellitus/metabolism
5.
Am J Hum Genet ; 110(2): 251-272, 2023 02 02.
Article En | MEDLINE | ID: mdl-36669495

For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics.


Gene Expression Profiling , Neurodevelopmental Disorders , Humans , RNA-Seq , Cycloheximide , Sequence Analysis, RNA/methods , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics
6.
Hum Genet ; 142(3): 379-397, 2023 Mar.
Article En | MEDLINE | ID: mdl-36538041

CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.


Actins , Zebrafish , Animals , Humans , DNA-Binding Proteins/metabolism , Endosomes/genetics , Endosomes/metabolism , HEK293 Cells , Lectins, C-Type/genetics , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Nuclear Proteins/metabolism , Protein Transport , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitins/metabolism , Zebrafish/genetics , Zebrafish/metabolism
7.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Article En | MEDLINE | ID: mdl-35051358

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


BRCA1 Protein/genetics , Germ-Line Mutation , Loss of Function Mutation , Mutation, Missense , Neurodevelopmental Disorders/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Adolescent , BRCA1 Protein/immunology , Child , Child, Preschool , Chromatin/chemistry , Chromatin/immunology , Chromatin Assembly and Disassembly/genetics , Chromatin Assembly and Disassembly/immunology , Family , Female , Gene Expression Regulation , Heterozygote , Histones/genetics , Histones/immunology , Host Cell Factor C1/genetics , Host Cell Factor C1/immunology , Humans , Infant , Male , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/pathology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/immunology , Ubiquitin/genetics , Ubiquitin/immunology , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Ubiquitination
8.
Eur J Paediatr Neurol ; 35: 27-34, 2021 Nov.
Article En | MEDLINE | ID: mdl-34592643

The increasing pace of gene discovery in the last decade has brought a major change in the way the genetic causes of brain malformations are being diagnosed. Unbiased genomic screening has gained the first place in the diagnostic protocol of a child with congenital (brain) anomalies and the detected variants are matched with the phenotypic presentation afterwards. This process is defined as "reverse phenotyping". Screening of DNA, through copy number variant analysis of microarrays and analysis of exome data on different platforms, obtained from the index patient and both parents has become a routine approach in many centers worldwide. Clinicians are used to multidisciplinary team interaction in patient care and disease management and this explains why the majority of research that has led to the discovery of new genetic disorders nowadays proceeds from clinical observations to genomic analysis and to data exchange facilitated by open access sharing databases. However, the relevance of multidisciplinary team interaction has not been object of systematic research in the field of brain malformations. This review will illustrate some examples of how diagnostically driven questions through multidisciplinary interaction, among clinical and preclinical disciplines, can be successful in the discovery of new genes related to brain malformations. The first example illustrates the setting of interaction among neurologists, geneticists and neuro-radiologists. The second illustrates the importance of interaction among clinical dysmorphologists for pattern recognition of syndromes with multiple congenital anomalies. The third example shows how fruitful it can be to step out of the "clinical comfort zone", and interact with basic scientists in applying emerging technologies to solve the diagnostic puzzles.


Abnormalities, Multiple , DNA Copy Number Variations , Abnormalities, Multiple/genetics , Child , Exome , Genetic Association Studies , Humans , Exome Sequencing
9.
Eur J Paediatr Neurol ; 35: 35-39, 2021 Nov.
Article En | MEDLINE | ID: mdl-34592644

TUBB2B codes for one of the isotypes of ß-tubulin and dominant negative variants in this gene result in distinctive malformations of cortical development (MCD), including dysgyria, dysmorphic basal ganglia and cerebellar anomalies. We present a novel family with a heterozygous missense variant in TUBB2B and an unusually mild phenotype. First, at 21 37 weeks of gestation ultrasonography revealed a fetus with a relatively small head, enlarged lateral ventricles, borderline hypoplastic cerebellum and a thin corpus callosum. The couple opted for pregnancy termination. Exome sequencing on fetal material afterwards identified a heterozygous maternally inherited variant in TUBB2B (NM_178012.4 (TUBB2B):c.530A > T, p.(Asp177Val)), not present in GnomAD and predicted as damaging. The healthy mother had only a language delay in childhood. This inherited TUBB2B variant prompted re-evaluation of the older son of the couple, who presented with a mild delay in motor skills and speech. His MRI revealed mildly enlarged lateral ventricles, a thin corpus callosum, mild cortical dysgyria, and dysmorphic vermis and basal ganglia, a pattern typical of tubulinopathies. This son finally showed the same TUBB2B variant, supporting pathogenicity of the TUBB2B variant. These observations illustrate the wide phenotypic heterogeneity of tubulinopathies, including reduced penetrance and mild expressivity, that require careful evaluation in pre- and postnatal counseling.


Malformations of Cortical Development , Tubulin , Female , Humans , Magnetic Resonance Imaging , Male , Malformations of Cortical Development/genetics , Mutation , Phenotype , Pregnancy , Tubulin/genetics
10.
Neurol Genet ; 7(2): e558, 2021 Apr.
Article En | MEDLINE | ID: mdl-33928188

OBJECTIVE: We aimed to identify pathogenic variants in a girl with epilepsy, developmental delay, cerebellar ataxia, oral motor difficulty, and structural brain abnormalities with the use of whole-exome sequencing. METHODS: Whole-exome trio analysis and molecular functional studies were performed in addition to the clinical findings and neuroimaging studies. RESULTS: Brain MRI showed mild pachygyria, hypoplasia of the cerebellar vermis, and abnormal foliation of the cerebellar vermis, suspected for a variant in one of the genes of the Reelin pathway. Trio whole-exome sequencing and additional functional studies were performed to identify the pathogenic variants. Trio whole-exome sequencing revealed compound heterozygous splice variants in DAB1, both affecting the highly conserved functional phosphotyrosine-binding domain. Expression studies in patient-derived cells showed loss of normal transcripts, confirming pathogenicity. CONCLUSIONS: We conclude that these variants are very likely causally related to the cerebral phenotype and propose to consider loss-of-function DAB1 variants in patients with RELN-like cortical malformations.

11.
J Med Genet ; 58(1): 33-40, 2021 01.
Article En | MEDLINE | ID: mdl-32571897

BACKGROUND: Variants in genes belonging to the tubulin superfamily account for a heterogeneous spectrum of brain malformations referred to as tubulinopathies. Variants in TUBB2A have been reported in 10 patients with a broad spectrum of brain imaging features, ranging from a normal cortex to polymicrogyria, while one patient has been reported with progressive atrophy of the cerebellar vermis. METHODS: In order to further refine the phenotypical spectrum associated with TUBB2A, clinical and imaging features of 12 patients with pathogenic TUBB2A variants, recruited via the international network of the authors, were reviewed. RESULTS: We report 12 patients with eight novel and one recurrent variants spread throughout the TUBB2A gene but encoding for amino acids clustering at the protein surface. Eleven patients (91.7%) developed seizures in early life. All patients suffered from intellectual disability, and 11 patients had severe motor developmental delay, with 4 patients (36.4 %) being non-ambulatory. The cerebral cortex was normal in five individuals and showed dysgyria of variable severity in seven patients. Associated brain malformations were less frequent in TUBB2A patients compared with other tubulinopathies. None of the patients had progressive cerebellar atrophy. CONCLUSION: The imaging phenotype associated with pathogenic variants in TUBB2A is highly variable, ranging from a normal cortex to extensive dysgyria with associated brain malformations. For recurrent variants, no clear genotype-phenotype correlations could be established, suggesting the role of additional modifiers.


Developmental Disabilities/genetics , Intellectual Disability/genetics , Nervous System Malformations/genetics , Polymicrogyria/genetics , Tubulin/genetics , Adolescent , Adult , Brain/diagnostic imaging , Brain/pathology , Cerebellar Vermis/diagnostic imaging , Cerebellar Vermis/pathology , Child , Child, Preschool , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/pathology , Female , Genetic Predisposition to Disease , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/pathology , Male , Mutation, Missense/genetics , Nervous System Malformations/diagnostic imaging , Nervous System Malformations/pathology , Neuroimaging/methods , Phenotype , Polymicrogyria/diagnostic imaging , Polymicrogyria/pathology , Tubulin/deficiency , Young Adult
12.
Sci Adv ; 6(49)2020 12.
Article En | MEDLINE | ID: mdl-33268356

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.


Histones , Neurodegenerative Diseases , Animals , Forkhead Transcription Factors/genetics , Germ-Line Mutation , Histones/genetics , Histones/metabolism , Humans , Neurodegenerative Diseases/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
13.
Hum Mutat ; 41(11): 1906-1917, 2020 11.
Article En | MEDLINE | ID: mdl-32939943

Goldberg-Shprintzen syndrome (GOSHS) is caused by loss of function variants in the kinesin binding protein gene (KIFBP). However, the phenotypic range of this syndrome is wide, indicating that other factors may play a role. To date, 37 patients with GOSHS have been reported. Here, we document nine new patients with variants in KIFBP: seven with nonsense variants and two with missense variants. To our knowledge, this is the first time that missense variants have been reported in GOSHS. We functionally investigated the effect of the variants identified, in an attempt to find a genotype-phenotype correlation. We also determined whether common Hirschsprung disease (HSCR)-associated single nucleotide polymorphisms (SNPs), could explain the presence of HSCR in GOSHS. Our results showed that the missense variants led to reduced expression of KIFBP, while the truncating variants resulted in lack of protein. However, no correlation was found between the severity of GOSHS and the location of the variants. We were also unable to find a correlation between common HSCR-associated SNPs, and HSCR development in GOSHS. In conclusion, we show that reduced, as well as lack of KIFBP expression can lead to GOSHS, and our results suggest that a threshold expression of KIFBP may modulate phenotypic variability of the disease.


Craniofacial Abnormalities/genetics , Hirschsprung Disease/genetics , Nerve Tissue Proteins/genetics , Adult , Child , Codon, Nonsense , Female , Genetic Association Studies , HEK293 Cells , Humans , Male , Mutation, Missense , Polymorphism, Single Nucleotide
14.
Am J Hum Genet ; 105(6): 1126-1147, 2019 12 05.
Article En | MEDLINE | ID: mdl-31735293

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.


Brain Diseases/pathology , Brain/abnormalities , Developmental Disabilities/pathology , Membrane Proteins/metabolism , Mitochondria/metabolism , Thioredoxins/metabolism , Adolescent , Adult , Brain Diseases/genetics , Brain Diseases/metabolism , Child , Child, Preschool , Cohort Studies , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Membrane Proteins/genetics , Mitochondria/pathology , Oxidation-Reduction , Prognosis , Skin/metabolism , Skin/pathology , Thioredoxins/genetics , Transcriptome
15.
Am J Hum Genet ; 105(4): 844-853, 2019 10 03.
Article En | MEDLINE | ID: mdl-31585108

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.


Alleles , Classical Lissencephalies and Subcortical Band Heterotopias/genetics , Cytoskeletal Proteins/genetics , Developmental Disabilities/genetics , Lissencephaly/genetics , Female , Humans , Male , Pedigree
16.
Am J Hum Genet ; 105(4): 689-705, 2019 10 03.
Article En | MEDLINE | ID: mdl-31495489

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.


Arthrogryposis/genetics , Microcephaly/genetics , Neurodevelopmental Disorders/genetics , Sphingomyelin Phosphodiesterase/genetics , Arthrogryposis/pathology , Cell Lineage , Child , Endoplasmic Reticulum/metabolism , Female , Gene Expression Profiling , HEK293 Cells , Humans , Male , Microcephaly/pathology , Mitosis , Neurodevelopmental Disorders/pathology , Pedigree , RNA Splicing
17.
Brain ; 142(4): 867-884, 2019 04 01.
Article En | MEDLINE | ID: mdl-30879067

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.


Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/physiology , Adult , Brain/pathology , Carrier Proteins/genetics , Cell Cycle/physiology , Cilia/metabolism , Female , Genetic Association Studies/methods , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Infant , Infant, Newborn , Male , Malformations of Cortical Development/genetics , Malformations of Cortical Development/metabolism , Microcephaly/genetics , Mutation , Nervous System Malformations/genetics , Polymicrogyria/etiology , Polymicrogyria/pathology
18.
Am J Hum Genet ; 103(6): 1009-1021, 2018 12 06.
Article En | MEDLINE | ID: mdl-30471716

To date, mutations in 15 actin- or microtubule-associated genes have been associated with the cortical malformation lissencephaly and variable brainstem hypoplasia. During a multicenter review, we recognized a rare lissencephaly variant with a complex brainstem malformation in three unrelated children. We searched our large brain-malformation databases and found another five children with this malformation (as well as one with a less severe variant), analyzed available whole-exome or -genome sequencing data, and tested ciliogenesis in two affected individuals. The brain malformation comprised posterior predominant lissencephaly and midline crossing defects consisting of absent anterior commissure and a striking W-shaped brainstem malformation caused by small or absent pontine crossing fibers. We discovered heterozygous de novo missense variants or an in-frame deletion involving highly conserved zinc-binding residues within the GAR domain of MACF1 in the first eight subjects. We studied cilium formation and found a higher proportion of mutant cells with short cilia than of control cells with short cilia. A ninth child had similar lissencephaly but only subtle brainstem dysplasia associated with a heterozygous de novo missense variant in the spectrin repeat domain of MACF1. Thus, we report variants of the microtubule-binding GAR domain of MACF1 as the cause of a distinctive and most likely pathognomonic brain malformation. A gain-of-function or dominant-negative mechanism appears likely given that many heterozygous mutations leading to protein truncation are included in the ExAC Browser. However, three de novo variants in MACF1 have been observed in large schizophrenia cohorts.


Axon Guidance/genetics , Cell Movement/genetics , Conserved Sequence/genetics , Microfilament Proteins/genetics , Mutation/genetics , Neurons/pathology , Zinc/metabolism , Adolescent , Brain Stem/pathology , Child , Child, Preschool , Cilia/genetics , Female , Humans , Lissencephaly/genetics , Male , Microtubules/genetics , Nervous System Malformations/genetics
19.
Eur J Med Genet ; 61(12): 783-789, 2018 Dec.
Article En | MEDLINE | ID: mdl-30391508

Heterozygous gain of function mutations in the ZIC1 gene have been described with syndromic craniosynostosis, variable cerebral or cerebellar abnormalities and mild to moderate developmental delay. Deletion of chromosome 3q25.1 including both adjacent ZIC1 and ZIC4 genes have been described as a cause of variable cerebellar abnormalities including Dandy-Walker malformation. We report two siblings presenting with neonatal microcephaly, agenesis of the corpus callosum, brachycephaly with reduced volume of the posterior fossa, cerebellar and pons hypoplasia, scoliosis and tethered cord (closed neural tube defect). One of the siblings had apparent partial rhombencephalosynapsis. Trio analysis of exome sequencing data revealed a novel heterozygous frameshift mutation in ZIC1 at the end of exon 3 in one sibling and was confirmed by Sanger sequencing in both children. The mutation was not detected in DNA of both parents, which suggests parental gonadal mosaicism. We show that expression of the mutant allele leads to synthesis of a stable abnormal transcript in patient cells, without evidence for nonsense-mediated decay. Craniosynostosis was not present at birth, which explains why ZIC1 mutations were not initially considered. This severe brain malformation indicates that premature closure of sutures can be independent of the abnormal brain development in subjects with pathogenic variants in ZIC1.


Craniosynostoses/genetics , Malformations of Cortical Development/genetics , Microcephaly/genetics , Transcription Factors/genetics , Adolescent , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/physiopathology , Cerebellum/physiopathology , Child , Child, Preschool , Craniosynostoses/physiopathology , Female , Frameshift Mutation , Humans , Infant , Male , Malformations of Cortical Development/physiopathology , Microcephaly/physiopathology , Neural Tube Defects/genetics , Neural Tube Defects/physiopathology , Phenotype , Scoliosis/genetics , Scoliosis/physiopathology
20.
Am J Hum Genet ; 101(4): 552-563, 2017 Oct 05.
Article En | MEDLINE | ID: mdl-28965847

The Sonic Hedgehog (SHH) pathway is a key signaling pathway orchestrating embryonic development, mainly of the CNS and limbs. In vertebrates, SHH signaling is mediated by the primary cilium, and genetic defects affecting either SHH pathway members or ciliary proteins cause a spectrum of developmental disorders. SUFU is the main negative regulator of the SHH pathway and is essential during development. Indeed, Sufu knock-out is lethal in mice, and recessive pathogenic variants of this gene have never been reported in humans. Through whole-exome sequencing in subjects with Joubert syndrome, we identified four children from two unrelated families carrying homozygous missense variants in SUFU. The children presented congenital ataxia and cerebellar vermis hypoplasia with elongated superior cerebellar peduncles (mild "molar tooth sign"), typical cranio-facial dysmorphisms (hypertelorism, depressed nasal bridge, frontal bossing), and postaxial polydactyly. Two siblings also showed polymicrogyria. Molecular dynamics simulation predicted random movements of the mutated residues, with loss of the native enveloping movement of the binding site around its ligand GLI3. Functional studies on cellular models and fibroblasts showed that both variants significantly reduced SUFU stability and its capacity to bind GLI3 and promote its cleavage into the repressor form GLI3R. In turn, this impaired SUFU-mediated repression of the SHH pathway, as shown by altered expression levels of several target genes. We demonstrate that germline hypomorphic variants of SUFU cause deregulation of SHH signaling, resulting in recessive developmental defects of the CNS and limbs which share features with both SHH-related disorders and ciliopathies.


Abnormalities, Multiple/genetics , Bone Diseases, Developmental/genetics , Cerebellum/abnormalities , Craniofacial Abnormalities/genetics , Eye Abnormalities/genetics , Genes, Recessive , Hedgehog Proteins/metabolism , Kidney Diseases, Cystic/genetics , Mutation, Missense , Repressor Proteins/genetics , Retina/abnormalities , Abnormalities, Multiple/pathology , Bone Diseases, Developmental/pathology , Cells, Cultured , Cerebellum/pathology , Child , Cohort Studies , Craniofacial Abnormalities/pathology , Eye Abnormalities/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Developmental , Humans , Kidney Diseases, Cystic/pathology , Kruppel-Like Transcription Factors/metabolism , Male , Nerve Tissue Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Retina/pathology , Sequence Analysis, DNA , Signal Transduction , Skin/metabolism , Skin/pathology , Zinc Finger Protein Gli3
...