Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418931

RESUMEN

Critical source areas (CSAs) are small areas of a field, farm, or catchment that account for most contaminant loss by having both a high contaminant availability and transport potential. Most work on CSAs has focused on phosphorus (P), largely through the work in the 1990s initiated by Dr. Sharpley and colleagues who recognized the value in targeting mitigation efforts. The CSA concept has been readily grasped by scientists, farmers, and policymakers across the globe. However, experiences and success have been mixed, often caused by the variation in where and how CSAs are defined. For instance, analysis of studies from 1990 to 2023 shows that the proportion of the annual contaminant load coming from a CSA decreases from field to farm to catchment scale. This finding is consistent with increased buffering of CSAs and greater contribution of other sources with scale, or variation in the definition of CSAs. We therefore argue that the best application of CSAs to target mitigation actions should be at small areas that truly account for most contaminant loss. This article sheds light on the development and utilization of CSAs, paying tribute to Dr. Sharpley's remarkable contributions to the improvement of water quality, and reflecting upon where the CSA concept has succeeded or not in reducing contaminant (largely P) loss.

2.
Sci Total Environ ; 868: 161500, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36690113

RESUMEN

Highly stabilized digestate from sewage sludge and digestate-derived ammonium sulphate (RFs), were used in a comparison with synthetic mineral fertilizers (SF) to crop maize in a three-year plot trial in open fields. RFs and SF were dosed to ensure the same amount of mineral N (ammonia-N). In doing so, plots fertilized with digestate received much more N (+185 kg ha-1 of organic N) because digestate also contained organic N. The fate of nitrogen was studied by measuring mineral and organic N in soil at different depths, ammonia and N2O emissions, and N uptake in crops. Soil analyses indicated that at one-meter depth there was no significant difference in nitrate content between RF, SF and Unfertilized plots during crop season indicating that more N dosed with digestate did not lead to extra nitrate leaching. Ammonia emissions and N content in plants and grains measured were also similar for both RF and SF. Measuring denitrification activity by using gene makers resulted in a higher denitrification activity for RF than SF. Nevertheless, N2O measurements showed that SF emitted more N2O than RF (although it was not statistically different) (7.59 ± 3.2 kgN ha-1 for RF and 10.3 ± 6.8 kgN ha-1 for SF), suggesting that probably the addition of organic matter with digestate to RF, increased the denitrification efficiency so that N2 production was favoured. Soil analyses, although were not able detecting N differences between SF and Rf after three years of cropping, revealed a statistical increasing of total carbon, suggesting that dosing digestate lead to carbon (and maybe N) accumulation in soil. Data seem to suggest that N2O/N2 emission and organic N accumulation in soil can explain the fate of the extra N dosed (organic-N) in RF plots.

3.
Sci Total Environ ; 815: 152919, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998783

RESUMEN

Recovered fertilizers (a highly stabilized digestate and ammonium sulphate) obtained from anaerobic digestion of sewage sludge, were used on plot trials with a maize crop, in a comparison with synthetic fertilizers. After three consecutive cropping seasons, the soils fertilized with the recovered fertilizers (RF), compared to those fertilized with synthetic fertilizers (SF), did not show significant differences either in their chemical characteristics or in the accumulation of inorganic and organic pollutants (POPs). The RF ensured an ammonia N availability in the soil equal to that of the soil fertilized with SF, during the whole period of the experiment. Furthermore, no risks of N leaching were detected, and the use of RF did not result in a greater emission of ammonia or greenhouse gases than the use of SF. The agronomic results obtained using RF were equivalent to those obtained with SF (fertilizer use efficiency of 85.3 ± 10 and 93.6 ± 4.4% for RF and SF respectively). The data show that utilising a very stable digestate can be a good strategy to produce a bio-based fertilizer with similar performance to that of a synthetic fertilizer, without environmental risks.


Asunto(s)
Fertilizantes , Suelo , Sulfato de Amonio , Producción de Cultivos , Fertilizantes/análisis , Nitrógeno/análisis , Aguas del Alcantarillado
4.
Ambio ; 51(3): 611-622, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34013441

RESUMEN

Phosphorus (P) is an essential element to all living beings but also a finite resource. P-related problems center around broken P cycles from local to global scales. This paper presents outcomes from the 9th International Phosphorus Workshop (IPW9) held 2019 on how to move towards a sustainable P management. It is based on two sequential discussion rounds with all participants. Important progress was reported regarding the awareness of P as finite mineable resource, technologies to recycle P, and legislation towards a circular P economy. Yet, critical deficits were identified such as how to handle legacy P, how climate change may affect ecosystem P cycling, or working business models to up-scale existing recycling models. Workshop participants argued for more transdisciplinary networks to narrow a perceived science-practice/policy gap. While this gap may be smaller in reality as illustrated with a Swiss example, we formulate recommendations how to bridge this gap more effectively.


Asunto(s)
Ecosistema , Fósforo , Humanos , Investigación Interdisciplinaria , Reciclaje
5.
Sci Total Environ ; 782: 146882, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848865

RESUMEN

The use of digestate in agriculture represents an opportunity for reducing the use of synthetic fertilizers while promoting nutrient and organic matter recycling, i.e. contributing to a circular economy. However, some environmental impacts could result from digestate use, with particular reference to N emissions, which can contribute to particulate matter formation in the atmosphere. So, correct digestate spreading methods need to be tested to reduce ammonia emission and, possibly, also to avoid annoyance to the inhabitants. In this work a digestate from organic wastes was used as a fertilizer by its injection at 15 cm, in comparison with a synthetic one (urea) for three consecutive years in open fields, measuring ammonia and odours emission. On average, the ammonia emission from digestate was of 25.6 ± 9.4 kg N Ha-1 (11.6% ± 4 of Total Ammonia Nitrogen - TAN - dosed), while urea emitted 24.8 ± 8.3 kg N Ha-1 (13.4% ± 4.5 of TAN dosed). The injected digestate also emitted less odour than urea (601 ± 531 and 1767 ± 2221 OU m-2 h-1, respectively), being ammonia coming from urea hydrolysis responsible for odour productions. The different N fertilizers did not lead to differences in crop yields, i.e. 18.5 ± 2.9 Mg grain Ha-1 and 17.4 ± 1.2 Mg grain Ha-1 for digestate and urea respectively.

6.
Waste Manag ; 124: 356-367, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662767

RESUMEN

This work reports a full-scale study in which organic wastes were transformed by high-solid thermophilic anaerobic digestion (HSAD), into N fertilizers and organic fertilizers, i.e. digestate. The produced fertilizers were characterized over 42 months and their properties were discussed in comparisons with literature data. HSAD coupled with N stripping technology led to ammonia sulphate production having high N concentration (74 ± 2 g kg-1 wet weight), neutral pH (6.8 ± 1.3) and low traces of other elements. Digestate showed both higher carbon (C) content (314 ± 30 g kg-1 on dry matter (DM) and biological stability than green composts, indicating good amendment properties. Digestate was also interesting for its N (77 ± 3.7 g kg-1 dry matter - DM) content, half of it in the ammonia form, and P content (28 ± 4.1 g kg-1 DM) that was 43% readily available as soluble P-orthophosphate. K content was low (6.5 ± 1.3 g kg-1 DM), indicating poor fertilizing ability of digestate for this element. All organic pollutants investigated were much lower than the limits required for agricultural use and levels of some of them were lower than the content revealed for other organic matrices such as agricultural and energy crop digestates and compost. Emerging pollutants (i.e., pharmaceuticals) were tested as markers and they were found to be below the detection limit (<0.01 mg kg-1 DM) indicating very low content. The results obtained showed that HSAD coupled with N stripping allowed transforming sewage sludge into fertilizers and soil improvers exploitable in agriculture.


Asunto(s)
Agricultura , Fertilizantes , Anaerobiosis , Fertilizantes/análisis , Aguas del Alcantarillado , Suelo
7.
Ambio ; 44 Suppl 2: S180-92, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25681976

RESUMEN

Food production in Europe is dependent on imported phosphorus (P) fertilizers, but P use is inefficient and losses to the environment high. Here, we discuss possible solutions by changes in P management. We argue that not only the use of P fertilizers and P additives in feed could be reduced by fine-tuning fertilization and feeding to actual nutrient requirements, but also P from waste has to be completely recovered and recycled in order to close the P balance of Europe regionally and become less dependent on the availability of P-rock reserves. Finally, climate-smart P management measures are needed, to reduce the expected deterioration of surface water quality resulting from climate-change-induced P loss.


Asunto(s)
Fósforo/análisis , Agricultura , Conservación de los Recursos Naturales , Europa (Continente)
8.
Ambio ; 44 Suppl 2: S163-79, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25681975

RESUMEN

The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities.


Asunto(s)
Agricultura/tendencias , Fósforo/análisis , Agua/análisis
9.
Ambio ; 44 Suppl 2: S193-206, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25681977

RESUMEN

The inefficient use of phosphorus (P) in the food chain is a threat to the global aquatic environment and the health and well-being of citizens, and it is depleting an essential finite natural resource critical for future food security and ecosystem function. We outline a strategic framework of 5R stewardship (Re-align P inputs, Reduce P losses, Recycle P in bioresources, Recover P in wastes, and Redefine P in food systems) to help identify and deliver a range of integrated, cost-effective, and feasible technological innovations to improve P use efficiency in society and reduce Europe's dependence on P imports. Their combined adoption facilitated by interactive policies, co-operation between upstream and downstream stakeholders (researchers, investors, producers, distributors, and consumers), and more harmonized approaches to P accounting would maximize the resource and environmental benefits and help deliver a more competitive, circular, and sustainable European economy. The case of Europe provides a blueprint for global P stewardship.


Asunto(s)
Conservación de los Recursos Naturales , Fósforo , Ecosistema , Europa (Continente)
10.
J Environ Qual ; 40(5): 1617-26, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21913367

RESUMEN

To reduce losses from agricultural soils to surface water, mitigation options have to be implemented as a local scale. For a cost-effective implementation of these measures, an instrument to identify critical areas for P leaching is indispensable. In many countries, P-index methods are used to identify areas as risk for P losses to surface water. In flat areas, where losses by leaching are dominant, these methods have their limitations because leaching is often not described in detail, PLEASE, is a simple mechanistic model designed to stimulate P Losses by leaching at the field scale using a limited amount of local field data. In this study, PLEASE, was applied to 17 lowland sites in Denmark and 14 lowland sites in the Netherlands. Results show that the simple model simulated measured fluxes and concentrations in water from pipe drains, suction cups, and groundwater quite well. The modeling efficiency ranged from 0.92 for modeling total-P fluxes to 0.36 fr modeling concentrations in groundwater. Poor results were obtained for heavy clay soils and eutrophic peat soils, where fluxes and concentration were strongly underestimated by the model. The poot performance for the heavy clay soil can be explained by the transport of P through macropores to the drain pipes and the underestimation of overland flow on this heavy-textured soil. In the eutrophic peat soils, fluxes were underestimated due to the release of P from deep soil layers.


Asunto(s)
Modelos Teóricos , Fósforo/análisis , Dinamarca , Países Bajos , Suelo/química
11.
J Environ Qual ; 38(5): 1956-67, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19704139

RESUMEN

Today there are many well-established computer models that are being used at different spatial and temporal scales to describe water, sediment, and P transport from diffuse sources. In this review, we describe how diffuse P models are commonly being used in the United States and Europe, the challenge presented by different temporal and spatial scales, and the uncertainty in model predictions. In the United States, for water bodies that do not meet water quality standards, a total maximum daily load (TMDL) of the pollutant of concern must be set that will restore water quality and a plan implemented to reduce the pollutant load to meet the TMDL. Models are used to estimate the current maximum daily and annual average load, to estimate the contribution from different nonpoint sources, and to develop scenarios for achieving the TMDL target. In Europe, the EC-Water Framework Directive is the driving force to improve water quality and models are playing a similar role to that in the United States, but the models being used are not the same. European models are more likely to take into account leaching of P and the identification of critical source areas. Scaling up to the watershed scale has led to overparameterized models that cannot be used to test hypotheses regarding nonpoint sources of P or transport processes using the monitoring data that is typically available. There is a need for more parsimonious models and monitoring data that takes advantage of the technological improvements that allow nearly continuous sampling for P and sediment. Tools for measuring model uncertainty must become an integral part of models and be readily available for model users.


Asunto(s)
Modelos Teóricos , Fósforo/análisis , Agua/química , Simulación por Computador , Monitoreo del Ambiente , Europa (Continente) , Sedimentos Geológicos/química , Estiércol , Incertidumbre , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...