Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Dev Biol ; 8(3)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664575

RESUMEN

Disruption of the Heparan sulfate (HS)-biosynthetic gene N-acetylglucosamine N-Deacetylase/N-sulfotransferase 1 (Ndst1) during nervous system development causes malformations that are composites of those caused by mutations of multiple HS binding growth factors and morphogens. However, the role of Ndst function in adult brain physiology is less explored. Therefore, we generated mice bearing a Purkinje-cell-specific deletion in Ndst1 gene function by using Cre/loxP technology under the control of the Purkinje cell protein 2 (Pcp2/L7) promotor, which results in HS undersulfation. We observed that mutant mice did not show overt changes in the density or organization of Purkinje cells in the adult cerebellum, and behavioral tests also demonstrated normal cerebellar function. This suggested that postnatal Purkinje cell development and homeostasis are independent of Ndst1 function, or that impaired HS sulfation upon deletion of Ndst1 function may be compensated for by other Purkinje cell-expressed Ndst isoforms. To test the latter possibility, we additionally deleted the second Purkinje-cell expressed Ndst family member, Ndst2. This selectively abolished reproductive capacity of compound mutant female, but not male, mice, suggesting that ovulation, gestation, or female reproductive behavior specifically depends on Ndst-dependent HS sulfation in cells types that express Cre under Pcp2/L7 promotor control.

2.
Theory Biosci ; 136(3-4): 89-98, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27995440

RESUMEN

Are we in the midst of a paradigm change in biology and have animals and plants lost their individuality, i.e., are even so-called 'typical' organisms no longer organisms in their own right? Is the study of the holobiont-host plus its symbiotic microorganisms-no longer optional, but rather an obligatory path that must be taken for a comprehensive understanding of the ecology and evolution of the individual components that make up a holobiont? Or are associated microbes merely a component of their host's environment, and the holobiont concept is just a beautiful idea that does not add much or anything to our understanding of evolution? This article explores different aspects of the concept of the holobiont. We focus on the aspect of functional integration, a central holobiont property, which is only rarely considered thoroughly. We conclude that the holobiont comes in degrees, i.e., we regard the property of being a holobiont as a continuous trait that we term holobiontness, and that holobiontness is differentiated in several dimensions. Although the holobiont represents yet another level of selection (different from classical individual or group selection because it acts on a system that is composed of multiple species), it depends on the grade of functional integration whether or not the holobiont concept helps to cast light on the various degrees of interactions between symbiotic partners.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Biología/métodos , Ecología/métodos , Animales , Antozoos , Drosophila , Hongos , Humanos , Paramecium , Fenotipo , Plantas , Rickettsia , Simbiosis
3.
Front Behav Neurosci ; 10: 97, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303275

RESUMEN

Anxiety and aggression are part of the behavioral repertoire of humans and animals. However, in their exaggerated form both can become maladaptive and result in psychiatric disorders. On the one hand, genetic predisposition has been shown to play a crucial modulatory role in anxiety and aggression. On the other hand, social experiences have been implicated in the modulation of these traits. However, so far, mainly experiences in early life phases have been considered crucial for shaping anxiety-like and aggressive behavior, while the phase of adolescence has largely been neglected. Therefore, the aim of the present study was to elucidate how levels of anxiety-like and aggressive behavior are shaped by social experiences during adolescence and serotonin transporter (5-HTT) genotype. For this purpose, male mice of a 5-HTT knockout mouse model including all three genotypes (wildtype, heterozygous and homozygous 5-HTT knockout mice) were either exposed to an adverse social situation or a beneficial social environment during adolescence. This was accomplished in a custom-made cage system where mice experiencing the adverse environment were repeatedly introduced to the territory of a dominant opponent but had the possibility to escape to a refuge cage. Mice encountering beneficial social conditions had free access to a female mating partner. Afterwards, anxiety-like and aggressive behavior was assessed in a battery of tests. Surprisingly, unfavorable conditions during adolescence led to a decrease in anxiety-like behavior and an increase in exploratory locomotion. Additionally, aggressive behavior was augmented in animals that experienced social adversity. Concerning genotype, homozygous 5-HTT knockout mice were more anxious and less aggressive than heterozygous 5-HTT knockout and wildtype mice. In summary, adolescence is clearly an important phase in which anxiety-like and aggressive behavior can be shaped. Furthermore, it seems that having to cope with challenge during adolescence instead of experiencing throughout beneficial social conditions leads to reduced levels of anxiety-like behavior.

4.
Front Behav Neurosci ; 9: 47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25784864

RESUMEN

Behavioral profiles are influenced by both positive and negative experiences as well as the genetic disposition. Traditionally, accumulating adversity over lifetime is considered to predict increased anxiety-like behavior ("allostatic load"). The alternative "mismatch hypothesis" suggests increased levels of anxiety if the early environment differs from the later-life environment. Thus, there is a need for a whole-life history approach to gain a deeper understanding of how behavioral profiles are shaped. The aim of this study was to elucidate the effects of life history on the behavioral profile of mice varying in serotonin transporter (5-HTT) genotype, an established mouse model of increased anxiety-like behavior. For this purpose, mice grew up under either adverse or beneficial conditions during early phases of life. In adulthood, they were further subdivided so as to face a situation that either matched or mismatched the condition experienced so far, resulting in four different life histories. Subsequently, mice were tested for their anxiety-like and exploratory behavior. The main results were: (1) Life history profoundly modulated the behavioral profile. Surprisingly, mice that experienced early beneficial and later escapable adverse conditions showed less anxiety-like and more exploratory behavior compared to mice of other life histories. (2) Genotype significantly influenced the behavioral profile, with homozygous 5-HTT knockout mice displaying highest levels of anxiety-like and lowest levels of exploratory behavior. Our findings concerning life history indicate that the absence of adversity does not necessarily cause lower levels of anxiety than accumulating adversity. Rather, some adversity may be beneficial, particularly when following positive events. Altogether, we conclude that for an understanding of behavioral profiles, it is not sufficient to look at experiences during single phases of life, but the whole life history has to be considered.

5.
Behav Brain Res ; 283: 116-20, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25629942

RESUMEN

Over the past years, certain "vulnerability genes" have been identified that play a key role in the development of mood and anxiety disorders. In particular, a low-expressing variant of the human serotonin transporter (5-HTT) gene has been described that renders individuals more susceptible to adverse experience and hence to the development of psychiatric diseases. However, some authors have recently argued that lower 5-HTT expression not only increases vulnerability to adverse experiences, but also enhances susceptibility to beneficial experiences, thus promoting phenotypic plasticity. The aim of the present study was to assess the effects of 5-HTT expression on susceptibility to beneficial experience in a hypothesis-driven experimental approach. Using a well-established rodent model for the human polymorphism, male heterozygous 5-HTT knockout (HET) and 5-HTT wildtype (WT) mice were either provided with the beneficial experience of cohabitation with a female (mating experience) or kept as naïve controls in single-housing conditions. Following the experimental treatment, they were tested for their anxiety-like behaviour and exploratory locomotion in three widely used behavioural tests. Interestingly, while cohabitation reduced anxiety-like behaviour and increased exploratory locomotion in the open field test in HET mice, it did not affect WT mice, pointing to a genotype-dependent susceptibility to the beneficial experience. Thus, our results might support the view of the low expressing version of the 5-HTT gene as a "plasticity" rather than a "vulnerability" variant.


Asunto(s)
Ansiedad/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Animales , Ansiedad/metabolismo , Conducta Exploratoria/fisiología , Vivienda para Animales , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Actividad Motora/fisiología , Pruebas Neuropsicológicas , Distribución Aleatoria , Proteínas de Transporte de Serotonina en la Membrana Plasmática/deficiencia , Conducta Sexual Animal/fisiología
6.
PLoS One ; 9(8): e105431, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25137069

RESUMEN

Cognitive bias, the altered information processing resulting from the background emotional state of an individual, has been suggested as a promising new indicator of animal emotion. Comparable to anxious or depressed humans, animals in a putatively negative emotional state are more likely to judge an ambiguous stimulus as if it predicts a negative event, than those in positive states. The present study aimed to establish a cognitive bias test for mice based on a spatial judgment task and to apply it in a pilot study to serotonin transporter (5-HTT) knockout mice, a well-established mouse model for the study of anxiety- and depression-related behavior. In a first step, we validated that our setup can assess different expectations about the outcome of an ambiguous stimulus: mice having learned to expect something positive within a maze differed significantly in their behavior towards an unfamiliar location than animals having learned to expect something negative. In a second step, the use of spatial location as a discriminatory stimulus was confirmed by showing that mice interpret an ambiguous stimulus depending on its spatial location, with a position exactly midway between a positive and a negative reference point provoking the highest level of ambiguity. Finally, the anxiety- and depression-like phenotype of the 5-HTT knockout mouse model manifested--comparable to human conditions--in a trend for a negatively distorted interpretation of ambiguous information, albeit this effect was not statistically significant. The results suggest that the present cognitive bias test provides a useful basis to study the emotional state in mice, which may not only increase the translational value of animal models in the study of human affective disorders, but which is also a central objective of animal welfare research.


Asunto(s)
Trastornos de Ansiedad/fisiopatología , Ansiedad/fisiopatología , Cognición/fisiología , Depresión/fisiopatología , Trastorno Depresivo/fisiopatología , Juicio/fisiología , Animales , Ansiedad/metabolismo , Trastornos de Ansiedad/metabolismo , Conducta Animal/fisiología , Sesgo , Depresión/metabolismo , Trastorno Depresivo/metabolismo , Modelos Animales de Enfermedad , Femenino , Aprendizaje/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proyectos Piloto , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA