Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Front Immunol ; 15: 1377955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165363

RESUMEN

Ataxia telangiectasia (AT) is a rare autosomal-recessive disorder characterized by profound neurodegeneration, combined immunodeficiency, and an increased risk for malignant diseases. Treatment options for AT are limited, and the long-term survival prognosis for patients remains grim, primarily due to the emergence of chronic respiratory pathologies, malignancies, and neurological complications. Understanding the dysregulation of the immune system in AT is fundamental for the development of novel treatment strategies. In this context, we performed a retrospective longitudinal immunemonitoring of lymphocyte subset distribution in a cohort of AT patients (n = 65). Furthermore, we performed FACS analyses of peripheral blood mononuclear cells from a subgroup of 12 AT patients to examine NK and T cells for the expression of activating and functional markers. We observed reduced levels of peripheral blood CD3+CD8+ cytotoxic T cells, CD3+CD4+ T helper cells, and CD19+ B cells, whereas the amount of CD3--CD56+ NK cells and CD3+CD56+ NKT-like cells was similar compared with age-matched controls. Notably, there was no association between the age-dependent kinetic of T-, B-, or NK-cell counts and the occurrence of malignancy in AT patients. Additionally, our results indicate an altered NK- and T-cell response to cytokine stimulation in AT with increased levels of TRAIL, FasL, and CD16 expression in NK cells, as well as an elevated activation level of T cells in AT with notably higher expression levels of IFN-γ, CD107a, TRAIL, and FasL. Together, these findings imply function alterations in AT lymphocytes, specifically in T and NK cells, shedding light on potential pathways for innovative therapies.


Asunto(s)
Ataxia Telangiectasia , Células Asesinas Naturales , Humanos , Ataxia Telangiectasia/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Femenino , Niño , Adolescente , Adulto , Estudios Retrospectivos , Preescolar , Adulto Joven , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inmunofenotipificación
2.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062931

RESUMEN

microRNA (miR)-146a emerges as a promising post-transcriptional regulator in various inflammatory diseases with different roles for the two isoforms miR-146a-5p and miR-146a-3p. The present study aimed to examine the dual role of miR-146a-5p and miR-146a 3p in the modulation of inflammation in human pulmonary epithelial and immune cells in vitro as well as their expression in patients with inflammatory lung diseases. Experimental inflammation in human A549, HL60, and THP1 via the NF-kB pathway resulted in the major upregulation of miR-146a-5p and miR-146a-3p expression, which was partly cell-specific. Modulation by transfection with miRNA mimics and inhibitors demonstrated an anti-inflammatory effect of miR-146a-5p and a pro-inflammatory effect of miR-146a-3p, respectively. A mutual interference between miR-146a-5p and miR-146a-3p was observed, with miR-146a-5p exerting a predominant influence. In vivo NGS analyses revealed an upregulation of miR-146a-3p in the blood of patients with cystic fibrosis and bronchiolitis obliterans, while miR-146a-5p levels were downregulated or unchanged compared to controls. The reverse pattern was observed in patients with SARS-CoV-2 infection. In conclusion, miR-146a-5p and miR-146a-3p are two distinct but interconnected miRNA isoforms with opposing functions in inflammation regulation. Understanding their interaction provides important insights into the progression and persistence of inflammatory lung diseases and might provide potential therapeutic options.


Asunto(s)
Células Epiteliales , Inflamación , MicroARNs , Humanos , Células A549 , COVID-19/genética , COVID-19/inmunología , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Inflamación/genética , Inflamación/metabolismo , Pulmón/patología , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Células THP-1
3.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279356

RESUMEN

A high proportion of house dust mite (HDM)-allergic asthmatics suffer from both an early asthmatic reaction (EAR) and a late asthmatic reaction (LAR) which follows it. In these patients, allergic inflammation is more relevant. MiRNAs have been shown to play an important role in the regulation of asthma's pathology. The aim of this study was to analyze the miRNA profile in patients with mild asthma and an HDM allergy after bronchial allergen provocation (BAP). Seventeen patients with EAR/no LAR and 17 patients with EAR plus LAR, determined by a significant fall in FEV1 after BAP, were differentially analyzed. As expected, patients with EAR plus LAR showed a more pronounced allergic inflammation and FEV1 delta drop after 24 h. NGS-miRNA analysis identified the down-regulation of miR-15a-5p, miR-15b-5p, and miR-374a-5p after BAP with the highest significance in patients with EAR plus LAR, which were negatively correlated with eNO and the maximum decrease in FEV1. These miRNAs have shared targets like CCND1, VEGFA, and GSK3B, which are known to be involved in airway remodeling, basement membrane thickening, and Extracellular Matrix deposition. NGS-profiling identified miRNAs involved in the inflammatory response after BAP with HDM extract, which might be useful to predict a LAR.


Asunto(s)
Asma , MicroARNs , Humanos , Pruebas de Provocación Bronquial , Asma/genética , Alérgenos , Inflamación/genética , MicroARNs/genética , Volumen Espiratorio Forzado
4.
Oncoimmunology ; 13(1): 2296712, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170159

RESUMEN

Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.


Asunto(s)
Colitis , Enfermedad Injerto contra Huésped , Ratones , Animales , Humanos , Colitis/inducido químicamente , Colitis/genética , Linfocitos T Reguladores/metabolismo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/metabolismo
5.
Cytokine ; 173: 156452, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039695

RESUMEN

BACKGROUND: Obesity is known to be a pro-inflammatory condition affecting multiple organs. Obesity as a systemic pro-inflammatory state, might be associated with bronchial inflammation in non-smoking adolescents with a BMI ≥ 30 kg/m2 without evidence of concomitant chronic diseases. MATERIALS AND METHODS: We studied non-asthmatic obese patients (n = 20; median age 15.8 years; BMI 35.0 kg/m2) compared to age matched healthy control subjects (n = 20; median age 17.5 years; BMI 21.5 kg/m2). Induced sputum differential cell counts and sputum mRNA levels were assessed for all study subjects. Serum levels of CRP, IL-6, and IL-8 were measured. Further, IL-5, IL-6, IL-8, IL-13, IL-17, TNF-α, IFN-γ, and IP-10 protein levels were analyzed in induced sputum was. RESULTS: Serum CRP levels, sputum inflammatory cell load and sputum eosinophils differed significantly between obese and non-obese subjects, for sputum neutrophils, a correlation was shown with BMI ≥ 30 kg/m2. Differences were also observed for sputum mRNA expression of IL6, IL8, IL13, IL17, IL23, and IFN-γ, as well as the transcription factors T-bet, GATA3, and FoxP3. CONCLUSIONS: Increased bronchial inflammation, triggered by systemic or local inflammatory effects of obesity itself, may account for the higher rates of airway disease in obese adolescents.


Asunto(s)
Asma , Obesidad Infantil , Humanos , Adolescente , Asma/metabolismo , Interleucina-8/metabolismo , Interleucina-6/metabolismo , Obesidad Infantil/metabolismo , Inflamación/metabolismo , Esputo/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Sci Rep ; 13(1): 19386, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938627

RESUMEN

Ataxia telangiectasia is a monogenetic disorder caused by mutations in the ATM gene. Its encoded protein kinase ATM plays a fundamental role in DNA repair of double strand breaks (DSBs). Impaired function of this kinase leads to a multisystemic disorder including immunodeficiency, progressive cerebellar degeneration, radiation sensitivity, dilated blood vessels, premature aging and a predisposition to cancer. Since allogenic hematopoietic stem cell (HSC) transplantation improved disease outcome, gene therapy based on autologous HSCs is an alternative promising concept. However, due to the large cDNA of ATM (9.2 kb), efficient packaging of retroviral particles and sufficient transduction of HSCs remains challenging.We generated lentiviral, gammaretroviral and foamy viral vectors with a GFP.F2A.Atm fusion or a GFP transgene and systematically compared transduction efficiencies. Vector titers dropped with increasing transgene size, but despite their described limited packaging capacity, we were able to produce lentiviral and gammaretroviral particles. The reduction in titers could not be explained by impaired packaging of the viral genomes, but the main differences occurred after transduction. Finally, after transduction of Atm-deficient (ATM-KO) murine fibroblasts with the lentiviral vector expressing Atm, we could show the expression of ATM protein which phosphorylated its downstream substrates (pKap1 and p-p53).


Asunto(s)
Ataxia Telangiectasia , Animales , Ratones , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/terapia , Genoma Viral , Transgenes , Genotipo , Terapia Genética
7.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834040

RESUMEN

The recovery of cells after tissue and organ injury is a complex process [...].


Asunto(s)
Regeneración
8.
Cells ; 12(19)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37830614

RESUMEN

The autosomal recessive disorder Ataxia-Telangiectasia is caused by a dysfunction of the stress response protein, ATM. In the nucleus of proliferating cells, ATM senses DNA double-strand breaks and coordinates their repair. This role explains T-cell dysfunction and tumour risk. However, it remains unclear whether this function is relevant for postmitotic neurons and underlies cerebellar atrophy, since ATM is cytoplasmic in postmitotic neurons. Here, we used ATM-null mice that survived early immune deficits via bone-marrow transplantation, and that reached initial neurodegeneration stages at 12 months of age. Global cerebellar transcriptomics demonstrated that ATM depletion triggered upregulations in most neurotransmission and neuropeptide systems. Downregulated transcripts were found for the ATM interactome component Usp2, many non-coding RNAs, ataxia genes Itpr1, Grid2, immediate early genes and immunity factors. Allelic splice changes affected prominently the neuropeptide machinery, e.g., Oprm1. Validation experiments with stressors were performed in human neuroblastoma cells, where ATM was localised only to cytoplasm, similar to the brain. Effect confirmation in SH-SY5Y cells occurred after ATM depletion and osmotic stress better than nutrient/oxidative stress, but not after ATM kinase inhibition or DNA stressor bleomycin. Overall, we provide pioneer observations from a faithful A-T mouse model, which suggest general changes in synaptic and dense-core vesicle stress adaptation.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Neuropéptidos , Ratones , Animales , Humanos , Lactante , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Regulación hacia Abajo , Regulación hacia Arriba , Transcriptoma/genética , Transmisión Sináptica/genética , Enfermedades Neurodegenerativas/metabolismo , Ratones Noqueados , Neuropéptidos/genética , Neuropéptidos/metabolismo , ADN , ARN no Traducido , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
9.
Front Biosci (Landmark Ed) ; 28(7): 138, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37525914

RESUMEN

BACKGROUND: High TGFß1-producing variants cause severe clinical disease in F508del homozygous patients. Lately, we showed that a single nucleotide polymorphism (SNP), rs41266431, in the GJA4 gene modifies the disease severity of cystic fibrosis (CF). Our aim was to investigate whether the clinical phenotype associated with GJA4 variants was independent of TGFß1 variants. METHODS: Homozygous F508del patients (n = 115, mean age 27.2 years, m/f (65/50)) were included in this study. A deep sequence analysis was performed for GJA4 and TGBß1, and disease severity was assessed over 3 years using lung function tests (LFTs), body mass index, diabetes mellitus, colonization with Pseudomonas aeruginosa, survival to end-stage lung disease (ESLD), as well as distinct inflammatory biomarkers. RESULTS: The analyses revealed that one SNP (rs41266431) in GJA4 may be clinically relevant. Carriers homozygous for the G variant (n = 84; 73%) presented with worse LFTs (forced vital capacity (FVC) % predicted: mean 80/86.6, p < 0.035) and a lower survival to ESLD (p < 0.029). For the TGBß1 variant: 509 carriers of the C variant (CT + CC genotype, n = 105, 91.3%) had better LFTs (Forced expiratory flow at 75% of the FVC (FEF75% predicted: median 40/29.5, p < 0.015), although a similar outcome to ESLD. A gene-gene interaction was not observed between TGBß1 and GJA4 variants for any clinical measure. CONCLUSIONS: GJA4 variants are independent of TGBß1 variants. Both variants had an impact on the LFTs, although only GJA4 variants were associated with an improved outcome for ESLD. CLINICAL TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov, number NCT04242420, retrospectively on January 24th, 2020.

10.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446246

RESUMEN

Renal proximal tubular epithelial cells (PTCs) are central players during renal inflammation. In response to inflammatory signals, PTCs not only self-express altered mRNAs, microRNAs (miRNAs), proteins, and lipids, but also release altered extracellular vesicles (EVs). These EVs also carry inflammation-specific cargo molecules and are key players in cell-cell-communication. Understanding the precise molecular and cellular mechanisms that lead to inflammation in the kidney is the most important way to identify early targets for the prevention or treatment of acute kidney injury. Therefore, highly purified human PTCs were used as an in vitro model to study the cellular response to an inflammatory microenvironment. A cytokine-induced inflammatory system was established to analyze different miRNA expression in cells and their EVs. In detail, we characterized the altered miR expression of PTCs and their released EVs during induced inflammation and showed that 12 miRNAs were significantly regulated in PTCs (6 upregulated and 6 downregulated) and 9 miRNAs in EVs (8 upregulated and 1 downregulated). We also showed that only three of the miRNAs were found to overlap between cells and EVs. As shown by the KEGG pathway analysis, these three miRNAs (miR-146a-5p, miR-147b, and miR-155-5p) are functionally involved in the regulation of the Toll-like receptor signaling pathway and significantly correlated with the inflammatory mediators IL6 and ICAM1 released by stimulated PTCs. Especially with regard to a possible clinical use of miRs as new biomarkers, an accurate characterization of the miR expression altered during inflammatory processes is of enormous importance.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Inflamación/genética , Inflamación/metabolismo
11.
Mediators Inflamm ; 2023: 3406399, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448886

RESUMEN

Introduction: Bronchiolitis obliterans (BO) is a chronic lung disease, which occurs after an insult to the lower airways, in particular after airway infections or after stem cell transplantation, and which results in persistent inflammation. N-3 and n-6 polyunsaturated fatty acids (PUFA) have been shown to influence the inflammatory processes in chronic inflammatory conditions. Since BO is maintained by persistent pulmonary inflammation, a disbalanced n-6/n-3 fatty acid profile could support the inflammatory process in patients with BO and therefore, could become an approach to new therapeutic options. Methods: Twenty-five patients with BO (age: 13; 7-39) and 26 healthy controls (age: 19; 7-31) participated in the study. Lung function (forced viral capacity (FVC), forced expiratory volume 1 (FEV1), residual volume (RV)), and lung clearance index (LCI) were measured. Induced sputum was analyzed for cytology and cytokine levels (IL-1ß, IL-6, IL-8, TNF-α) using cytometric bead array (CBA). The PUFA profile was determined in the serum and induced sputum by gas chromatography. Results: Patients presented with significantly lower FVC and FEV1 as well as higher RV and LCI measurements compared to the control group. Apart from a massive airway inflammation indicated by elevated numbers of total cells and neutrophils, the CBA analysis showed significantly increased levels of IL-1ß, IL-6, and IL-8. The analysis of PUFA in sputum and serum revealed a significant difference in the ratio between the n-6 PUFA arachidonic acid (AA) and the n-3 PUFA docosahexaenoic acid (DHA) (AA : DHA). Furthermore, the AA : DHA ratio significantly correlated with the inflammatory cytokines in induced sputum. Conclusion: Lung function in BO is significantly impaired and associated with uncontrolled neutrophil-dominated airway inflammation. Furthermore, the imbalance in the AA/DHA ratio in favor of n-6 PUFA demonstrates a pro-inflammatory microenvironment in the cell membrane, which correlates with the inflammatory cytokines in induced sputum and might be an option for an anti-inflammatory therapy in BO.


Asunto(s)
Bronquiolitis Obliterante , Ácidos Grasos Omega-3 , Humanos , Adolescente , Adulto Joven , Adulto , Interleucina-8 , Interleucina-6 , Inflamación/complicaciones , Ácidos Grasos Insaturados , Citocinas/metabolismo , Ácidos Grasos Omega-6 , Ácidos Docosahexaenoicos , Ácido Araquidónico/metabolismo
12.
Pediatr Pulmonol ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37378463

RESUMEN

Postinfectious bronchiolitis obliterans (PiBO) is a rare and severe form of chronic obstructive lung disease caused by an infectious injury to the lower respiratory tract. The most commonly recognized inciting stimuli leading to PiBO are airway pathogens, such as adenovirus and Mycoplasma. PiBO is characterized by persistent and nonreversible airway obstruction, with functional and radiological evidence of small airway involvement. The literature has limited information on the aetiology, clinical profile, treatment, and outcome of PiBO.

13.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768138

RESUMEN

Inflammation is intimately involved in the pathogenesis of diabetic kidney disease. Inhibition of SGLT-2 by a specific class of drugs, gliflozins, has been shown to reduce inflammation and attenuate the progression of diabetic nephropathy, in addition to its main effect of inhibiting renal glucose reabsorption. We used highly purified human renal proximal tubular epithelial cells (PTCs) as an in vitro model to study the cellular response to a diabetic (high glucose) and inflammatory (cytokines) microenvironment and the effect of gliflozins. In this context, we investigated the influence of SGLT-2 inhibition by empa- and dapagliflozin (500 nM) on the expression of pro-inflammatory factors (IL-1ß, IL-6, TNF-α, MCP-1, and ICAM-1). The results clearly indicate an anti-inflammatory effect of both gliflozins. Although induced expression of the four cytokines was only slightly attenuated, there was a clear effect on the expression of the adhesion molecule ICAM-1, a master regulator of cellular responses in inflammation and injury resolution. The induced expression of ICAM-1 mRNA was significantly reduced by approximately 13.5% by empagliflozin and also showed an inhibitory trend with dapagliflozin. However, induced ICAM-1 protein expression was significantly inhibited from 24.71 ± 1.0 ng/mL to 18.81 ± 3.9 (empagliflozin) and 19.62 ± 2.1 ng/mL (dapagliflozin). In conclusion, an additional anti-inflammatory effect of empa- and dapagliflozin in therapeutically observed concentrations was demonstrated in primary human PTCs in vitro.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Células Epiteliales/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Antiinflamatorios/uso terapéutico , Diabetes Mellitus/metabolismo
14.
Environ Res ; 216(Pt 1): 114417, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36162469

RESUMEN

BACKGROUND: SARS-CoV-2 is spread primarily through droplets and aerosols. Exhaled aerosols are generated in the upper airways through shear stress and in the lung periphery by 'reopening of collapsed airways'. Aerosol measuring may detect highly contagious individuals ("super spreaders or super-emitters") and discriminate between SARS-CoV-2 infected and non-infected individuals. This is the first study comparing exhaled aerosols in SARS-CoV-2 infected individuals and healthy controls. DESIGN: A prospective observational cohort study in 288 adults, comprising 64 patients testing positive by SARS CoV-2 PCR before enrollment, and 224 healthy adults testing negative (matched control sample) at the University Hospital Frankfurt, Germany, from February to June 2021. Study objective was to evaluate the concentration of exhaled aerosols during physiologic breathing in SARS-CoV-2 PCR-positive and -negative subjects. Secondary outcome measures included correlation of aerosol concentration to SARS-CoV-2 PCR results, change in aerosol concentration due to confounders, and correlation between clinical symptoms and aerosol. RESULTS: There was a highly significant difference in respiratory aerosol concentrations between SARS-CoV-2 PCR-positive (median 1490.5/L) and -negative subjects (median 252.0/L; p < 0.0001). There were no significant differences due to age, sex, smoking status, or body mass index. ROC analysis showed an AUC of 0.8918. CONCLUSIONS: Measurements of respiratory aerosols were significantly elevated in SARS-CoV-2 positive individuals, which helps to understand the spread and course of respiratory viral infections, as well as the detection of highly infectious individuals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , COVID-19/diagnóstico , Estudios Prospectivos , Aerosoles y Gotitas Respiratorias , Reacción en Cadena de la Polimerasa
15.
Haemophilia ; 29(1): 61-71, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36112753

RESUMEN

INTRODUCTION: Elevated markers of endothelial dysfunction and inflammation indicate worse endothelial function in the aging haemophilia population. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally. Several miRNAs have been shown to be involved in the process of endothelial dysfunction and atherosclerosis. AIM: The aim of this study was to determine the underlying molecular pathways of endothelial dysfunction and inflammation in haemophilia patients. METHODS: A total of 25 patients with severe or moderate haemophilia A (20 patients) or B (5 patients), 14 controls and 18 patients with coronary artery disease (CAD) after myocardial infarction were included in this study. Expression of miRNA-126, -155, -222, -1, -let7a, -21 and -197 were analysed using a real time polymerase chain reaction. Network-based visualisation and analysis of the miRNA-target interactions were performed using the MicroRNA ENrichment TURned NETwork (MIENTURNET). RESULTS: Expression of miRNA-126 (p < .05) and miRNA-let7a (p < .05) were significantly higher in CAD patients compared to haemophilia patients and controls. MiRNA-21 (p < .05) was significantly elevated in CAD patients compared to controls. MiRNA-155 (p < .05), miRNA-1 (p < .05) and miRNA-197 (p < .05) were significantly higher expressed in CAD and haemophilia patients compared to controls and showed a strong correlation with increased levels of interleukin-6 (IL-6) and soluble intercellular adhesion molecule-1 (sICAM-1). The network analysis revealed interactions in the cytokine signalling, focal adhesion and VEGFA-VEGFR2 pathway (Vascular endothelial growth factor, -receptor). CONCLUSION: This study characterises miRNA expression in haemophilia patients in comparison to CAD patients and healthy controls. The results imply comparable biological processes in CAD and haemophilia patients.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Hemofilia A , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Hemofilia A/complicaciones , Hemofilia A/genética , Factor A de Crecimiento Endotelial Vascular , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/genética , Aterosclerosis/genética , Inflamación
16.
J Autoimmun ; 132: 102891, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36113303

RESUMEN

BACKGROUND: Immune dysregulation as a result of an inborn error of immunity (IEI) leads to the complicated symptoms of refractory multi-organ immune dysregulation. B lymphocytes with immune regulatory capacity (Breg) are activated by environmental triggers and act as regulators of the immune response as observed in several autoimmune diseases. OBJECTIVE: We sought to investigate the Breg profile and the CD21low expressing B cells of patients with LRBA deficiency (N = 6) and non-LRBA deficiency IEI (N = 13) with overlapping clinical symptoms of immune dysregulation. Normal values for Breg subpopulations were obtained from patients age-matched healthy cohorts (N = 48). Furthermore, we investigated the impact of abatacept treatment in LRBA deficient patients receiving biweekly abatacept (N = 5). METHODS: Using a flow cytometric approach with a pre-formulated antibody panel in peripheral blood samples, Breg subsets including plasmablasts (CD27+CD38hi), transitional B cells (CD24hiCD38hi), and B10 cells (CD24hiCD27+), and additionally the CD21low B cells (CD21lowCD38low) were analyzed. Breg function was assessed by the interleukin-10 expression within the CD19+ population. Additionally, B cell cytokines were measured in cell culture supernatants. RESULTS: We observe significant alterations of B cell/Breg subpopulations in the LRBA deficient cohort including a severe lack of memory B cells (P = 0.031) and B10 cells (P = 0.031) as well as a tendency towards higher CD21low B cells (P = 0.063). Within the non-LRBA deficient cohort, we observe a significant expansion of the plasmablasts (P = 0.012), and a tendency towards elevated levels of CD21low expressing B cells (P = 0.063). The treatment with abatacept ameliorated disease symptoms in the LRBA deficient cohort and led to an effective decrease in CD21low B cells over time (P = 0.021). Furthermore, there was a significantly increased level of B cell-activating factor (BAFF; P = 0.02) and lower IL-12p70 secretion upon stimulation (P = 0.020) in the LRBA cohort. CONCLUSION: Aberrant maturation of Breg subsets and the pathological expansion of CD21low B cells in patients with IEI may have therapeutic implications. Patients suffering from LRBA deficiency show a lack of memory B cells, insufficient expansion of B10 cells, increased BAFF levels as well as an increase in circulating CD21low B cells. Abatacept treatment results in a steady decrease in CD21low B cells.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos B Reguladores , Humanos , Abatacept , Células Plasmáticas , Citometría de Flujo , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales
17.
Cell Death Dis ; 13(8): 684, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933402

RESUMEN

Pattern recognition receptors (PRRs) and interferons (IFNs) serve as essential antiviral defense against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Type III IFNs (IFN-λ) exhibit cell-type specific and long-lasting functions in auto-inflammation, tumorigenesis, and antiviral defense. Here, we identify the deubiquitinating enzyme USP22 as central regulator of basal IFN-λ secretion and SARS-CoV-2 infections in human intestinal epithelial cells (hIECs). USP22-deficient hIECs strongly upregulate genes involved in IFN signaling and viral defense, including numerous IFN-stimulated genes (ISGs), with increased secretion of IFN-λ and enhanced STAT1 signaling, even in the absence of exogenous IFNs or viral infection. Interestingly, USP22 controls basal and 2'3'-cGAMP-induced STING activation and loss of STING reversed STAT activation and ISG and IFN-λ expression. Intriguingly, USP22-deficient hIECs are protected against SARS-CoV-2 infection, viral replication, and the formation of de novo infectious particles, in a STING-dependent manner. These findings reveal USP22 as central host regulator of STING and type III IFN signaling, with important implications for SARS-CoV-2 infection and antiviral defense.


Asunto(s)
COVID-19 , Interferón Tipo I , Proteínas de la Membrana/metabolismo , Ubiquitina Tiolesterasa , Antivirales/farmacología , Humanos , Interferón Tipo I/genética , Interferones/metabolismo , Pandemias , SARS-CoV-2 , Ubiquitina Tiolesterasa/metabolismo , Interferón lambda
18.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35806391

RESUMEN

Mesenchymal stromal/stem cells and their derivates are the most promising cell source for cell therapies in regenerative medicine. The application of extracellular vesicles (EVs) as cell-free therapeuticals requires particles with a maximum regenerative capability to enhance tissue and organ regeneration. The cargo of mRNA and microRNA (miR) in EVs after hypoxic preconditioning has not been extensively investigated. Therefore, the aim of our study was the characterization of mRNA and the miR loading of EVs. We further investigated the effects of the isolated EVs on renal tubular epithelial cells in vitro. We found 3131 transcripts to be significantly regulated upon hypoxia. Only 15 of these were downregulated, but 3116 were up-regulated. In addition, we found 190 small RNAs, 169 of these were miRs and 21 were piwi-interacting RNAs (piR). However, only 18 of the small RNAs were significantly altered, seven were miRs and 11 were piRs. Interestingly, all seven miRs were down-regulated after hypoxic pretreatment, whereas all 11 piRs were up-regulated. Gene ontology term enrichment and miR-target enrichment analysis of the mRNAs and miR were also performed in order to study the biological background. Finally, the therapeutic effect of EVs on human renal tubular epithelial cells was shown by the increased expression of three anti-inflammatory molecules after incubation with EVs from hypoxic pretreatment. In summary, our study demonstrates the altered mRNA and miR load in EVs after hypoxic preconditioning, and their anti-inflammatory effect on epithelial cells.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Vesículas Extracelulares/metabolismo , Humanos , Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
19.
Oncoimmunology ; 11(1): 2081415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694192

RESUMEN

Natural Killer (NK) cells are known for their high intrinsic cytotoxic capacity, and the possibility to be applied as 'off-the-shelf' product makes them highly attractive for cell-based immunotherapies. In patients with multiple myeloma (MM), an elevated number of NK cells has been correlated with higher overall-survival rate. However, NK cell function can be impaired by upregulation of inhibitory receptors, such as the immune checkpoint NKG2A. Here, we developed a CRISPR-Cas9-based gene editing protocol that allowed us to knockout about 80% of the NKG2A-encoding killer cell lectin like receptor C1 (KLRC1) locus in primary NK cells. In-depth phenotypic analysis confirmed significant reduction in NKG2A protein expression. Importantly, the KLRC1-edited NK cells showed significantly increased cytotoxicity against primary MM cells isolated from a small cohort of patients, and maintained the NK cell-specific cytokine production. In conclusion, KLRC1-editing in primary NK cells has the prospect of overcoming immune checkpoint inhibition in clinical applications.


Asunto(s)
Mieloma Múltiple , Subfamília C de Receptores Similares a Lectina de Células NK , Sistemas CRISPR-Cas/genética , Edición Génica , Humanos , Células Asesinas Naturales/metabolismo , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
20.
J Clin Med ; 11(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35683571

RESUMEN

Background: Assessment of the effect of subgingival instrumentation (SI) on systemic inflammation in periodontitis grades B (BP) and C (CP). Methods: In this prospective cohort study, eight BP and 46 CP patients received SI. Data were collected prior to and 12 weeks after SI. Blood was sampled prior to, one day, 6, and 12 weeks after SI. Neutrophil elastase (NE), C-reactive protein (CRP), leukocyte count, lipopolysaccharide binding protein, interleukin 6 (IL-6) and IL-8 were assessed. Results: Both groups showed significant clinical improvement. NE was lower in BP than CP at baseline and 1 day after SI, while CRP was lower in BP than CP at baseline (p < 0.05). NE and CRP had a peak 1 day after SI (p < 0.05). Between-subjects effects due to CP (p = 0.042) and PISA (p = 0.005) occurred. Within-subjects NE change was confirmed and modulated by grade (p = 0.017), smoking (p = 0.029), number of teeth (p = 0.033), and PISA (p = 0.002). For CRP between-subjects effects due to BMI (p = 0.008) were seen. Within-subjects PISA modulated the change of CRP over time (p = 0.017). Conclusions: In untreated CP, NE and CRP were higher than in BP. SI results in better PPD and PISA reduction in BP than CP. Trial registration: Deutsches Register Klinischer Studien DRKS00026952 28 October 2021 registered retrospectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA