Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 12(35): 10444-51, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20585683

RESUMEN

We investigate the quality of structural models generated by the Reverse Monte Carlo (RMC) method in a typical application to glass systems. To this end we calculate diffraction data from a Li(2)O-SiO(2) molecular dynamics (MD) simulation and use it, in addition to minimal pair distances and coordination numbers of silicon (oxygen) to oxygen (silicon) ions, as input for RMC modeling. Then we compare partial radial distribution functions, coordination numbers, bond angles, and ring sizes predicted by the RMC models with those of the MD system. It is found that partial distribution functions and properties on small lengths scales, as distributions of coordination numbers and bond angles, are well reproduced by the RMC modeling. Properties in the medium-range order regime are, however, not well captured, as is demonstrated by comparison of ring size distributions. Due care therefore has to be exercised when extracting structural features from RMC models in this medium-range order regime. In particular we show that the occurrence of such features can be a mere consequence of the chosen starting configuration.

2.
Phys Rev Lett ; 102(14): 145902, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19392455

RESUMEN

Mixing two types of glass formers in ion conducting glasses can be exploited to lower conductivity activation energy and thereby increasing the ionic conductivity, a phenomenon known as the mixed glass former effect (MGFE). We develop a model for this MGFE, where activation barriers for individual ion jumps get lowered in inhomogeneous environments containing both types of network forming units. Fits of the model to experimental data allow one to estimate the strength of the barrier reduction, and they indicate a spatial clustering of the two types of network formers. The model predicts a time-temperature superposition of conductivity spectra onto a common master curve independent of the mixing ratio.

3.
Sensors (Basel) ; 7(11): 2499-2509, 2007 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-28903241

RESUMEN

The formation and behaviour of micelles of sodium dodecylsulfate in water byuse of a static micro mixer were studied. Trisbipyridylruthenium(II) was applied asindicator dye, 9-methylanthracene was used for fluorescence quenching. All experimentswere carried out by a micro fluid arrangement with three syringe pumps, a 2 1 two-stepstatic micro mixer (IPHT Jena) and a on-line micro fluorimetry including a luminescencediode for excitation, a blue glass filter (BG 7, Linos), two edge filters (RG 630, Linos) anda photo counting module (MP 900, Perkin Elmer). It was possible to measure thefluorescence inside the PTFE tube (inner diameter 0.5 mm) directly. A linear dependenceof fluorescence intensity from dye concentration was observed in absence of quencher andsurfactant as expected. An aggregation number of about 62 was found in the flow raterange between 300 and 800 µL/min. The fluorescence intensity increases slightly, butsignificant with increasing flow rate, if no quencher is present. In the presence of quencher,the fluorescence intensity decreases with decreasing surfactant concentration and withenhanced flow rate. The strength of the flow rate effect on the fluorescence increases withdecreasing surfactant concentration. The size of micelles was determined in micro channelsby the micro fluorimetric method in analogy to the conventional system. The micellesextract the quencher from the solution and lower, this way, the quenching effect. The sizeof micelles was estimated and it could be shown, that the flow rate has only low effect onthe aggregation number at the investigated flow rates. The effect of flow rate andsurfactant concentration on the fluorescence in the presence of quencher was interpreted asa shift in the micelle concentration due to the shear forces. It is expected, that thefluorescence intensity is lowered, if more quencher molecules are molecular disperse distributed inside the solution. Obviously, the lowered fluorescence intensity at higher flow rates suggests a reduction of the micelle density causing an increase of quencher concentration outside the micelles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA