Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 97, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372750

RESUMEN

Recent findings show that single, non-neuronal cells are also able to learn signalling responses developing cellular memory. In cellular learning nodes of signalling networks strengthen their interactions e.g. by the conformational memory of intrinsically disordered proteins, protein translocation, miRNAs, lncRNAs, chromatin memory and signalling cascades. This can be described by a generalized, unicellular Hebbian learning process, where those signalling connections, which participate in learning, become stronger. Here we review those scenarios, where cellular signalling is not only repeated in a few times (when learning occurs), but becomes too frequent, too large, or too complex and overloads the cell. This leads to desensitisation of signalling networks by decoupling signalling components, receptor internalization, and consequent downregulation. These molecular processes are examples of anti-Hebbian learning and 'forgetting' of signalling networks. Stress can be perceived as signalling overload inducing the desensitisation of signalling pathways. Ageing occurs by the summative effects of cumulative stress downregulating signalling. We propose that cellular learning desensitisation, stress and ageing may be placed along the same axis of more and more intensive (prolonged or repeated) signalling. We discuss how cells might discriminate between repeated and unexpected signals, and highlight the Hebbian and anti-Hebbian mechanisms behind the fold-change detection in the NF-κB signalling pathway. We list drug design methods using Hebbian learning (such as chemically-induced proximity) and clinical treatment modalities inducing (cancer, drug allergies) desensitisation or avoiding drug-induced desensitisation. A better discrimination between cellular learning, desensitisation and stress may open novel directions in drug design, e.g. helping to overcome drug resistance.


Asunto(s)
Aprendizaje , Transducción de Señal , Cromatina , FN-kappa B
2.
J Phys Chem B ; 125(7): 1716-1726, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33562960

RESUMEN

Network science is an emerging tool in systems biology and oncology, providing novel, system-level insight into the development of cancer. The aim of this project was to study the signaling networks in the process of oncogenesis to explore the adaptive mechanisms taking part in the cancerous transformation of healthy cells. For this purpose, colon cancer proved to be an excellent candidate as the preliminary phase, and adenoma has a long evolution time. In our work, transcriptomic data have been collected from normal colon, colon adenoma, and colon cancer samples to calculating link (i.e., network edge) weights as approximative proxies for protein abundances, and link weights were included in the Human Cancer Signaling Network. Here we show that the adenoma phase clearly differs from the normal and cancer states in terms of a more scattered link weight distribution and enlarged network diameter. Modular analysis shows the rearrangement of the apoptosis- and the cell-cycle-related modules, whose pathway enrichment analysis supports the relevance of targeted therapy. Our work enriches the system-wide assessment of cancer development, showing specific changes for the adenoma state.


Asunto(s)
Adenoma , Carcinoma , Neoplasias del Colon , Adenoma/genética , Neoplasias del Colon/genética , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...