Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 52(3): 335-349.e7, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31983631

RESUMEN

E2F transcription factors control the cytokinesis machinery and thereby ploidy in hepatocytes. If or how these proteins limit proliferation of polyploid cells with extra centrosomes remains unknown. Here, we show that the PIDDosome, a signaling platform essential for caspase-2-activation, limits hepatocyte ploidy and is instructed by the E2F network to control p53 in the developing as well as regenerating liver. Casp2 and Pidd1 act as direct transcriptional targets of E2F1 and its antagonists, E2F7 and E2F8, that together co-regulate PIDDosome expression during juvenile liver growth and regeneration. Of note, whereas hepatocyte aneuploidy correlates with the basal ploidy state, the degree of aneuploidy itself is not limited by PIDDosome-dependent p53 activation. Finally, we provide evidence that the same signaling network is engaged to control ploidy in the human liver after resection. Our study defines the PIDDosome as a primary target to manipulate hepatocyte ploidy and proliferation rates in the regenerating liver.


Asunto(s)
Caspasa 2/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/fisiología , Factores de Transcripción E2F/fisiología , Hepatocitos/citología , Regeneración Hepática , Poliploidía , Proteína p53 Supresora de Tumor/fisiología , Aneuploidia , Animales , Proteína Adaptadora de Señalización CRADD/fisiología , Centrosoma , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Citocinesis , Femenino , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados
2.
Liver Int ; 35(4): 1354-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24845341

RESUMEN

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is a major health problem and occurs frequently in the context of metabolic syndrome and type 2 diabetes mellitus. Hepatocyte-specific Pten-deficiency in mice was shown previously to result in hepatic steatosis due to hyperactivated AKT2. However, the role of peripheral insulin-sensitive tissues on PTEN- and AKT2-dependent accumulation of hepatic lipids has not been addressed. METHODS: Effects of systemically perturbed PTEN/AKT2 signalling on hepatic lipid content were studied in Pten-haplodeficient (Pten(+/-) /Akt2(+/+) ) mice and Pten-haplodeficient mice lacking Akt2 (Pten(+/-) /Akt2(-/-) ). The liver and skeletal muscle were characterized by histology and/or analysis of insulin signalling. To assess the effects of AKT2 activity in skeletal muscle on hepatic lipid content, AKT2 mutants were expressed in skeletal muscle of Pten(+/+) /Akt2(+/+) and Pten(+/-) /Akt2(+/+) mice using adeno-associated virus 8. RESULTS: Pten(+/-) /Akt2(+/+) mice were found to have a more than 2-fold reduction in hepatic lipid content, at a level similar to that observed in Pten(+/-) /Akt2(-/-) mice. Insulin signalling in the livers of Pten(+/-) /Akt2(+/+) mice was enhanced, indicating that extrahepatic factors prevent lipid accumulation. The skeletal muscle of Pten(+/-) /Akt2(+/+) mice also showed enhanced insulin signalling. Skeletal muscle-specific expression of constitutively active AKT2 reduced hepatic lipid content in Pten(+/+) /Akt2(+/+) mice, and dominant negative AKT2 led to an increase in accumulation of hepatic lipids in both Pten(+/+) /Akt2(+/+) and Pten(+/-) /Akt2(+/+) mice. CONCLUSION: Our results demonstrate that AKT2 activity in skeletal muscle critically affects lipid accumulation in the livers of Pten(+/+) /Akt2(+/+) and Pten(+/-) /Akt2(+/+) mice, and emphasize the role of skeletal muscle in the pathology of NAFLD.


Asunto(s)
Haploinsuficiencia , Metabolismo de los Lípidos , Hígado/metabolismo , Músculo Esquelético/enzimología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Fosfohidrolasa PTEN/deficiencia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Genotipo , Glucógeno/metabolismo , Insulina/sangre , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Mutación , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Fosfohidrolasa PTEN/genética , Fenotipo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Factores de Tiempo
3.
Liver Int ; 35(4): 1133-1144, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25156247

RESUMEN

BACKGROUND & AIMS: There is a growing evidence that bile acids are involved in the regulation of triglyceride-, cholesterol-homoeostasis and fat absorption. In this study organ-specific Fxr knockout mice were used to further investigate the influence of farnesoid X receptor FXR in lipogenesis. METHODS: Liver- and intestine-specific Fxr knockout mice were fed a 1% cholesterol diet for 28 days. Histological examination of frozen tissue sections included Sudan III/H&E, BODIPY staining and liver X receptor (LXR) immunohistochemistry. Liver triglycerides, serum cholesterol, serum bile acids and nuclear LXR protein were measured. mRNA expression of several genes involved in bile acid-, cholesterol-homoeostasis and lipogenesis was quantified by real-time PCR. RESULTS: Hepatic FXR deficiency contributes to lipid accumulation under 1% cholesterol administration which is not observed in intestinal Fxr knockout mice. Strong lipid accumulation, characterized by larger vacuoles could be observed in hepatic Fxr knockout sections, while intestinal Fxr knockout mice show no histological difference to controls. In addition, these mice have the ability to maintain normal serum cholesterol and bile acid levels. Hepatic Fxr knockouts were characterized by elevated triglycerides and bile acid levels. Expression level of LXR was significantly elevated under control and 1% cholesterol diet in hepatic Fxr knockout mice and was followed by concomitant lipogenic target gene induction such as Fas and Scd-1. This protective FXR effect against hepatic lipid accumulation was independent of intestinal Fgf15 induction. CONCLUSION: These results show that the principal site of protective bile acid signalling against lipid accumulation is located in the liver since the absence of hepatic but not intestinal FXR contributes to lipid accumulation under cholesterol diet.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Animales , Ácidos y Sales Biliares/sangre , Colesterol en la Dieta , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hígado/patología , Receptores X del Hígado , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Triglicéridos/sangre , Receptor fas/genética , Receptor fas/metabolismo
4.
Gastroenterology ; 143(6): 1609-1619.e4, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22960658

RESUMEN

BACKGROUND & AIMS: Extended liver resection leads to hepatic failure because of a small remnant liver volume. Excessive parenchymal damage has been proposed as the principal cause of this failure, but little is known about the contribution of a primary deficiency in liver regeneration. We developed a mouse model to assess the regenerative capacity of a critically small liver remnant. METHODS: Extended (86%) hepatectomy (eHx) was modified to minimize collateral damage; effects were compared with those of standard (68%) partial hepatectomy (pHx) in mice. Markers of liver integrity and survival were evaluated after resection. Liver regeneration was assessed by weight gain, proliferative activity (analyses of Ki67, proliferating cell nuclear antigen, phosphorylated histone 3, mitosis, and ploidy), and regeneration-associated molecules. Knockout mice were used to study the role of p21. RESULTS: Compared with pHx, survival of mice was reduced after eHx, and associated with cholestasis and impaired liver function. However, no significant differences in hepatocyte death, sinusoidal injury, oxidative stress, or energy depletion were observed between mice after eHx or pHx. No defect in the initiation of hepatocyte proliferation was apparent. However, restoration of liver mass was delayed after eHx and associated with inadequate induction of Foxm1b and a p21-dependent delay in cell-cycle progression. In p21(-/-) mice, the cell cycle was restored, the gain in liver weight was accelerated, and survival improved after eHx. CONCLUSIONS: Significant parenchymal injury is not required for liver failure to develop after extended hepatectomy. Rather, liver dysfunction after eHx results from a transient, p21-dependent block before hepatocyte division. Therefore, a deficiency in cell-cycle progression causes liver failure after extended hepatectomy and can be overcome by inhibition of p21.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Hepatectomía/efectos adversos , Fallo Hepático/etiología , Fallo Hepático/fisiopatología , Regeneración Hepática/fisiología , Hígado/cirugía , Animales , Ciclo Celular/fisiología , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Modelos Animales de Enfermedad , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/fisiología , Hígado/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos/fisiología
5.
Expert Rev Mol Med ; 14: e1, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22233681

RESUMEN

New therapeutic approaches to counter the increasing prevalence of obesity and type 2 diabetes mellitus are in high demand. Deregulation of the phosphoinositide-3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue (AKT), mitogen-activated protein kinase (MAPK) and AMP-activated protein kinase (AMPK) pathways, which are essential for glucose homeostasis, often results in obesity and diabetes. Thus, these pathways should be attractive therapeutic targets. However, with the exception of metformin, which is considered to function mainly by activating AMPK, no treatment for the metabolic syndrome based on targeting protein kinases has yet been developed. By contrast, therapies based on the inhibition of the PI3K/AKT and MAPK pathways are already successful in the treatment of diverse cancer types and inflammatory diseases. This contradiction prompted us to review the signal transduction mechanisms of PI3K/AKT, MAPK and AMPK and their roles in glucose homeostasis, and we also discuss current clinical implications.


Asunto(s)
Glucosa/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Homeostasis , Humanos , Sistema de Señalización de MAP Quinasas , Transducción de Señal
6.
Cell Res ; 22(3): 539-50, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21946500

RESUMEN

Enucleation of erythroblasts during terminal differentiation is unique to mammals. Although erythroid enucleation has been extensively studied, only a few genes, including retinoblastoma protein (Rb), have been identified to regulate nuclear extrusion. It remains largely undefined by which signaling molecules, the extrinsic stimuli, such as erythropoietin (Epo), are transduced to induce enucleation. Here, we show that p38α, a mitogen-activated protein kinase (MAPK), is required for erythroid enucleation. In an ex vivo differentiation system that contains high Epo levels and mimics stress erythropoiesis, p38α is activated during erythroid differentiation. Loss of p38α completely blocks enucleation of primary erythroblasts. Moreover, p38α regulates erythroblast enucleation in a cell-autonomous manner in vivo during fetal and anemic stress erythropoiesis. Markedly, loss of p38α leads to downregulation of p21, and decreased activation of the p21 target Rb, both of which are important regulators of erythroblast enucleation. This study demonstrates that p38α is a key signaling molecule for erythroblast enucleation during stress erythropoiesis.


Asunto(s)
Eritroblastos/metabolismo , Eritropoyesis , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Eritroblastos/citología , Ratones , Proteína Quinasa 14 Activada por Mitógenos/deficiencia
7.
Arch Physiol Biochem ; 117(2): 70-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21214427

RESUMEN

The protein kinase B (PKB) family encompasses three isoforms; PKBα (AKT1), PKBß (AKT2) and PKBγ (AKT3). PKBα and PKBß but not PKBγ, are prominently expressed in classical insulin-sensitive tissues like liver, muscle and fat. Transgenic mice deficient for PKBα, PKBß or PKBγ have been analysed to study the roles of PKB isoforms in metabolic regulation. Until recently, only loss of PKBß was reported to result in metabolic disorders, especially insulin resistance, in humans and mice. However, a new study has shown that PKBα-deficient mice can show enhanced glucose tolerance accompanied by improved ß-cell function and higher insulin sensitivity in adipocytes. These findings prompted us to review the relevant literature on the regulation of glucose metabolism by PKB isoforms in liver, skeletal muscle, adipocytes and pancreas.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Isoenzimas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Adipocitos/metabolismo , Animales , Metabolismo Energético/fisiología , Expresión Génica/fisiología , Humanos , Resistencia a la Insulina , Isoenzimas/genética , Hígado/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Especificidad de Órganos , Páncreas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Receptor de Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA