Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
2.
Nature ; 590(7847): 649-654, 2021 02.
Article En | MEDLINE | ID: mdl-33627808

The cell cycle, over which cells grow and divide, is a fundamental process of life. Its dysregulation has devastating consequences, including cancer1-3. The cell cycle is driven by precise regulation of proteins in time and space, which creates variability between individual proliferating cells. To our knowledge, no systematic investigations of such cell-to-cell proteomic variability exist. Here we present a comprehensive, spatiotemporal map of human proteomic heterogeneity by integrating proteomics at subcellular resolution with single-cell transcriptomics and precise temporal measurements of individual cells in the cell cycle. We show that around one-fifth of the human proteome displays cell-to-cell variability, identify hundreds of proteins with previously unknown associations with mitosis and the cell cycle, and provide evidence that several of these proteins have oncogenic functions. Our results show that cell cycle progression explains less than half of all cell-to-cell variability, and that most cycling proteins are regulated post-translationally, rather than by transcriptomic cycling. These proteins are disproportionately phosphorylated by kinases that regulate cell fate, whereas non-cycling proteins that vary between cells are more likely to be modified by kinases that regulate metabolism. This spatially resolved proteomic map of the cell cycle is integrated into the Human Protein Atlas and will serve as a resource for accelerating molecular studies of the human cell cycle and cell proliferation.


Cell Cycle , Proteogenomics/methods , Single-Cell Analysis/methods , Transcriptome , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Lineage , Cell Proliferation , Humans , Interphase , Mitosis , Oncogene Proteins/metabolism , Phosphorylation , Protein Kinases/metabolism , Proteome/metabolism , Time Factors
3.
Nat Biotechnol ; 36(9): 820-828, 2018 10.
Article En | MEDLINE | ID: mdl-30125267

Pattern recognition and classification of images are key challenges throughout the life sciences. We combined two approaches for large-scale classification of fluorescence microscopy images. First, using the publicly available data set from the Cell Atlas of the Human Protein Atlas (HPA), we integrated an image-classification task into a mainstream video game (EVE Online) as a mini-game, named Project Discovery. Participation by 322,006 gamers over 1 year provided nearly 33 million classifications of subcellular localization patterns, including patterns that were not previously annotated by the HPA. Second, we used deep learning to build an automated Localization Cellular Annotation Tool (Loc-CAT). This tool classifies proteins into 29 subcellular localization patterns and can deal efficiently with multi-localization proteins, performing robustly across different cell types. Combining the annotations of gamers and deep learning, we applied transfer learning to create a boosted learner that can characterize subcellular protein distribution with F1 score of 0.72. We found that engaging players of commercial computer games provided data that augmented deep learning and enabled scalable and readily improved image classification.


Deep Learning , Image Processing, Computer-Assisted/methods , Humans , Microscopy, Fluorescence , Subcellular Fractions/metabolism
4.
Science ; 356(6340)2017 05 26.
Article En | MEDLINE | ID: mdl-28495876

Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.


Molecular Imaging , Organelles/chemistry , Organelles/metabolism , Protein Interaction Maps , Proteome/analysis , Proteome/metabolism , Single-Cell Analysis , Cell Line , Datasets as Topic , Female , Humans , Male , Mass Spectrometry , Microscopy, Fluorescence , Protein Interaction Mapping , Proteome/genetics , Reproducibility of Results , Subcellular Fractions , Transcriptome
5.
J Proteome Res ; 16(1): 147-155, 2017 01 06.
Article En | MEDLINE | ID: mdl-27723985

Antibodies are indispensible research tools, yet the scientific community has not adopted standardized procedures to validate their specificity. Here we present a strategy to systematically validate antibodies for immunofluorescence (IF) applications using gene tagging. We have assessed the on- and off-target binding capabilities of 197 antibodies using 108 cell lines expressing EGFP-tagged target proteins at endogenous levels. Furthermore, we assessed batch-to-batch effects for 35 target proteins, showing that both the on- and off-target binding patterns vary significantly between antibody batches and that the proposed strategy serves as a reliable procedure for ensuring reproducibility upon production of new antibody batches. In summary, we present a systematic scheme for antibody validation in IF applications using endogenous expression of tagged proteins. This is an important step toward a reproducible approach for context- and application-specific antibody validation and improved reliability of antibody-based experiments and research data.


Antibodies/analysis , Fluorescent Antibody Technique/standards , Microscopy, Confocal/standards , Staining and Labeling/methods , Analysis of Variance , Antibodies/chemistry , Atlases as Topic , Cell Line , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Reference Standards , Reproducibility of Results
...