Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(16): 168668, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908784

RESUMEN

The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.

2.
ACS Synth Biol ; 13(5): 1549-1561, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632869

RESUMEN

ATP is a universal energy currency that is essential for life. l-Arginine degradation via deamination is an elegant way to generate ATP in synthetic cells, which is currently limited by a slow l-arginine/l-ornithine exchange. We are now implementing a new antiporter with better kinetics to obtain faster ATP recycling. We use l-arginine-dependent ATP formation for the continuous synthesis and export of glycerol 3-phosphate by including glycerol kinase and the glycerol 3-phosphate/Pi antiporter. Exported glycerol 3-phosphate serves as a precursor for the biosynthesis of phospholipids in a second set of vesicles, which forms the basis for the expansion of the cell membrane. We have therefore developed an out-of-equilibrium metabolic network for ATP recycling, which has been coupled to lipid synthesis. This feeder-utilizer system serves as a proof-of-principle for the systematic buildup of synthetic cells, but the vesicles can also be used to study the individual reaction networks in confinement.


Asunto(s)
Adenosina Trifosfato , Arginina , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Células Artificiales/metabolismo , Glicerofosfatos/metabolismo , Glicerol Quinasa/metabolismo , Glicerol Quinasa/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Lípidos/biosíntesis , Fosfolípidos/metabolismo , Redes y Vías Metabólicas
3.
Open Biol ; 11(4): 200406, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33823661

RESUMEN

The ATP-binding cassette transporter GlnPQ is an essential uptake system that transports glutamine, glutamic acid and asparagine in Gram-positive bacteria. It features two extra-cytoplasmic substrate-binding domains (SBDs) that are linked in tandem to the transmembrane domain of the transporter. The two SBDs differ in their ligand specificities, binding affinities and their distance to the transmembrane domain. Here, we elucidate the effects of the tandem arrangement of the domains on the biochemical, biophysical and structural properties of the protein. For this, we determined the crystal structure of the ligand-free tandem SBD1-2 protein from Lactococcus lactis in the absence of the transporter and compared the tandem to the isolated SBDs. We also used isothermal titration calorimetry to determine the ligand-binding affinity of the SBDs and single-molecule Förster resonance energy transfer (smFRET) to relate ligand binding to conformational changes in each of the domains of the tandem. We show that substrate binding and conformational changes are not notably affected by the presence of the adjoining domain in the wild-type protein, and changes only occur when the linker between the domains is shortened. In a proof-of-concept experiment, we combine smFRET with protein-induced fluorescence enhancement (PIFE-FRET) and show that a decrease in SBD linker length is observed as a linear increase in donor-brightness for SBD2 while we can still monitor the conformational states (open/closed) of SBD1. These results demonstrate the feasibility of PIFE-FRET to monitor protein-protein interactions and conformational states simultaneously.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Fenómenos Químicos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , Análisis Espectral , Relación Estructura-Actividad , Especificidad por Sustrato
4.
Sci Adv ; 6(47)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208376

RESUMEN

(Micro)organisms are exposed to fluctuating environmental conditions, and adaptation to stress is essential for survival. Increased osmolality (hypertonicity) causes outflow of water and loss of turgor and is dangerous if the cell is not capable of rapidly restoring its volume. The osmoregulatory adenosine triphosphate-binding cassette transporter OpuA restores the cell volume by accumulating large amounts of compatible solute. OpuA is gated by ionic strength and inhibited by the second messenger cyclic-di-AMP, a molecule recently shown to affect many cellular processes. Despite the master regulatory role of cyclic-di-AMP, structural and functional insights into how the second messenger regulates (transport) proteins on the molecular level are lacking. Here, we present high-resolution cryo-electron microscopy structures of OpuA and in vitro activity assays that show how the osmoregulator OpuA is activated by high ionic strength and how cyclic-di-AMP acts as a backstop to prevent unbridled uptake of compatible solutes.

5.
Elife ; 82019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30900991

RESUMEN

Substrate-binding proteins (SBPs) are associated with ATP-binding cassette importers and switch from an open to a closed conformation upon substrate binding, providing specificity for transport. We investigated the effect of substrates on the conformational dynamics of six SBPs and the impact on transport. Using single-molecule FRET, we reveal an unrecognized diversity of plasticity in SBPs. We show that a unique closed SBP conformation does not exist for transported substrates. Instead, SBPs sample a range of conformations that activate transport. Certain non-transported ligands leave the structure largely unaltered or trigger a conformation distinct from that of transported substrates. Intriguingly, in some cases, similar SBP conformations are formed by both transported and non-transported ligands. In this case, the inability for transport arises from slow opening of the SBP or the selectivity provided by the translocator. Our results reveal the complex interplay between ligand-SBP interactions, SBP conformational dynamics and substrate transport.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Cinética , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Especificidad por Sustrato
6.
J Mol Biol ; 430(8): 1249-1262, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29486154

RESUMEN

GlnPQ is an ATP-binding cassette importer with a unique domain organization and intricate transport behavior. The protein has two extracytoplamic substrate-binding domains (SBDs) per membrane subunit, each with different specificity for amino acids and different spacing to the translocator domain. We determined the effect of the length and structure of the linkers, which connect the SBDs to each other and to the membrane-embedded translocator domain, on the transport by GlnPQ. We reveal that varying the linker length impacts transport in a dual manner that depends on the conformational dynamics of the SBD. Varying the linker length not only changes the time for the SBD to find the translocator (docking) but also changes the probability to release the substrate again, thus altering the transport efficiency. On the basis of the experimental data and mathematical modeling, we calculate the docking efficiency as function of linker length and lifetime of the closed conformation. Importantly, not only linker length but also features in the sequence are important for efficient delivery of substrate from SBD to the translocator. We show that the linkers provide a platform for SBD docking and are not merely flexible structures.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Lactococcus lactis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Modelos Moleculares , Modelos Teóricos , Unión Proteica , Dominios Proteicos
7.
J Mol Biol ; 430(6): 853-866, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29432725

RESUMEN

Solute transport via ATP binding cassette (ABC) importers involves receptor-mediated substrate binding, which is followed by ATP-driven translocation of the substrate across the membrane. How these steps are exactly initiated and coupled, and how much ATP it takes to complete a full transport cycle, are subject of debate. Here, we reconstitute the ABC importer GlnPQ in nanodiscs and in proteoliposomes and determine substrate-(in)dependent ATP hydrolysis and transmembrane transport. We determined the conformational states of the substrate-binding domains (SBDs) by single-molecule Förster resonance energy transfer measurements. We find that the basal ATPase activity (ATP hydrolysis in the absence of substrate) is mainly caused by the docking of the closed-unliganded state of the SBDs onto the transporter domain of GlnPQ and that, unlike glutamine, arginine binds both SBDs but does not trigger their closing. Furthermore, comparison of the ATPase activity in nanodiscs with glutamine transport in proteoliposomes shows that the stoichiometry of ATP per substrate is close to two. These findings help understand the mechanism of transport and the energy coupling efficiency in ABC transporters with covalently linked SBDs, which may aid our understanding of Type I ABC importers in general.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato , Proteínas Bacterianas/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Hidrólisis , Cinética , Liposomas/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Proteolípidos
8.
J Am Chem Soc ; 139(51): 18640-18646, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29206456

RESUMEN

Protein conformations play crucial roles in most, if not all, biological processes. Here we show that the current carried through a nanopore by ions allows monitoring conformational changes of single and native substrate-binding domains (SBD) of an ATP-Binding Cassette importer in real-time. Comparison with single-molecule Förster Resonance Energy Transfer and ensemble measurements revealed that proteins trapped inside the nanopore have bulk-like properties. Two ligand-free and two ligand-bound conformations of SBD proteins were inferred and their kinetic constants were determined. Remarkably, internalized proteins aligned with the applied voltage bias, and their orientation could be controlled by the addition of a single charge to the protein surface. Nanopores can thus be used to immobilize proteins on a surface with a specific orientation, and will be employed as nanoreactors for single-molecule studies of native proteins. Moreover, nanopores with internal protein adaptors might find further practical applications in multianalyte sensing devices.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Nanoporos , Nanotecnología/métodos , Transferencia Resonante de Energía de Fluorescencia , Proteínas Inmovilizadas/química , Cinética , Ligandos , Conformación Proteica , Imagen Individual de Molécula
9.
J Bacteriol ; 198(3): 477-85, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26553850

RESUMEN

UNLABELLED: The GlnPQ transporter from Lactococcus lactis has the remarkable feature of having two substrate-binding domains (SBDs) fused to the N terminus of the transmembrane domain (TMD), and thus four SBDs are present in the homodimeric complex. Although X-ray structures and ligand binding data are available for both SBDs, little is known of how different amino acids compete with each other for transport via GlnPQ. Here we show GlnPQ has a broader substrate specificity than previously thought, with the ability to take up asparagine, glutamine, and glutamic acid, albeit via different routes and with different affinities. Asparagine and glutamine compete with each other at the level of binding to SBD1 and SBD2 (with differences in dissociation constant), but at the same time SBD1 and SBD2 compete with each other at the level of interaction with the translocator domain (with differences in affinity constant and rate of transport). Although glutamine transport via SBD1 is outcompeted by physiological concentrations of asparagine, SBD2 ensures high rates of import of the essential amino acid glutamine. Taken together, this study demonstrates that even in the presence of competing asparagine concentrations, GlnPQ has a high capacity to transport glutamine, which matches the high needs of the cell for glutamine and glutamate. IMPORTANCE: GlnPQ is an ATP-binding cassette (ABC) transporter for glutamine, glutamic acid, and asparagine. The system is essential in various Gram-positive bacteria, including L. lactis and several pathogens. Here we show how the amino acids compete with each other for binding to the multiple SBDs of GlnPQ and how these SBDs compete with each other for substrate delivery to the transporter. Overall, our results show that GlnPQ has evolved to transport diverse substrates via different paths and to optimally acquire the abundant and essential amino acid glutamine.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Lactococcus lactis/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas Bacterianas/genética , Ácido Glutámico/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/crecimiento & desarrollo , Unión Proteica , Estructura Terciaria de Proteína
10.
Biochem Soc Trans ; 43(5): 1041-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26517920

RESUMEN

ATP-binding cassette (ABC) transporters play crucial roles in cellular processes, such as nutrient uptake, drug resistance, cell-volume regulation and others. Despite their importance, all proposed molecular models for transport are based on indirect evidence, i.e. functional interpretation of static crystal structures and ensemble measurements of function and structure. Thus, classical biophysical and biochemical techniques do not readily visualize dynamic structural changes. We recently started to use single-molecule fluorescence techniques to study conformational states and changes of ABC transporters in vitro, in order to observe directly how the different steps during transport are coordinated. This review summarizes our scientific strategy and some of the key experimental advances that allowed the substrate-binding mechanism of prokaryotic ABC importers and the transport cycle to be explored. The conformational states and transitions of ABC-associated substrate-binding domains (SBDs) were visualized with single-molecule FRET, permitting a direct correlation of structural and kinetic information of SBDs. We also delineated the different steps of the transport cycle. Since information in such assays are restricted by proper labelling of proteins with fluorescent dyes, we present a simple approach to increase the amount of protein with FRET information based on non-specific interactions between a dye and the size-exclusion chromatography (SEC) column material used for final purification.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Conformación Proteica , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Carbocianinas/química , Cromatografía en Gel/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Unión Proteica , Reproducibilidad de los Resultados
11.
Nat Struct Mol Biol ; 22(1): 57-64, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25486304

RESUMEN

The conformational dynamics in ABC transporters is largely elusive. The ABC importer GlnPQ from Lactococcus lactis has different covalently linked substrate-binding domains (SBDs), thus making it an excellent model system to elucidate the dynamics and role of the SBDs in transport. We demonstrate by single-molecule spectroscopy that the two SBDs intrinsically transit from open to closed ligand-free conformation, and the proteins capture their amino acid ligands via an induced-fit mechanism. High-affinity ligands elicit transitions without changing the closed-state lifetime, whereas low-affinity ligands dramatically shorten it. We show that SBDs in the closed state compete for docking onto the translocator, but remarkably the effect is strongest without ligand. We find that the rate-determining steps depend on the SBD and the amino acid transported. We conclude that the lifetime of the closed conformation controls both SBD docking to the translocator and substrate release.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Lactococcus lactis/enzimología , Transporte Biológico , Transferencia Resonante de Energía de Fluorescencia , Lactococcus lactis/química , Lactococcus lactis/metabolismo , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica
12.
Mol Microbiol ; 92(4): 813-23, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24666282

RESUMEN

A critical event during spore germination is the release of Ca-DPA (calcium in complex with dipicolinic acid). The mechanism of release of Ca-DPA through the inner membrane of the spore is not clear, but proteins encoded by the Bacillus subtilis spoVA operon are involved in the process. We cloned and expressed the spoVAC gene in Escherichia coli and characterized the SpoVAC protein. We show that SpoVAC protects E. coli against osmotic downshift, suggesting that it might act as a mechanosensitive channel. Purified SpoVAC was reconstituted in unilamellar lipid vesicles to determine the gating mechanism and pore properties of the protein. By means of a fluorescence-dequenching assay, we show that SpoVAC is activated upon insertion into the membrane of the amphiphiles lysoPC and dodecylamine. Patch clamp experiments on E. coli giant spheroplast as well as giant unilamellar vesicles (GUVs) containing SpoVAC show that the protein forms transient pores with main conductance values of about 0.15 and 0.1 nS respectively. Overall, our data indicate that SpoVAC acts as a mechanosensitive channel and has properties that would allow the release of Ca-DPA and amino acids during germination of the spore.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Esporas Bacterianas/fisiología , Bacillus subtilis/genética , Clonación Molecular , Escherichia coli/genética , Expresión Génica , Activación del Canal Iónico , Fenómenos Mecánicos , Esporas Bacterianas/genética
13.
Structure ; 21(10): 1879-88, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-23994008

RESUMEN

The ATP-binding cassette (ABC) transporter GlnPQ is an essential uptake system for amino acids in gram-positive pathogens and related nonpathogenic bacteria. The transporter has tandem substrate-binding domains (SBDs) fused to each transmembrane domain, giving rise to four SBDs per functional transporter complex. We have determined the crystal structures and ligand-binding properties of the SBDs of GlnPQ from Enterococcus faecalis, Streptococcus pneumoniae, and Lactococcus lactis. The tandem SBDs differ in substrate specificity and affinity, allowing cells to efficiently accumulate different amino acids via a single ABC transporter. The combined structural, functional, and thermodynamic analysis revealed the roles of individual residues in determining the substrate affinity. We succeeded in converting a low-affinity SBD into a high-affinity receptor and vice versa. Our data indicate that a small number of residues that reside in the binding pocket constitute the major affinity determinants of the SBDs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Sistemas de Transporte de Aminoácidos Básicos/química , Proteínas Bacterianas/química , Enterococcus faecalis , Lactococcus lactis , Streptococcus pneumoniae , Transportadoras de Casetes de Unión a ATP/genética , Sustitución de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Glutamina/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
14.
J Biol Chem ; 287(44): 37165-70, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22948145

RESUMEN

We present the crystal structure of the pheromone receptor protein PrgZ from Enterococcus faecalis in complex with the heptapeptide cCF10 (LVTLVFV), which is used in signaling between conjugative recipient and donor cells. Comparison of PrgZ with homologous oligopeptide-binding proteins (AppA and OppA) explains the high specificity of PrgZ for hydrophobic heptapeptides versus the promiscuity of peptide binding in the homologous proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Enterococcus faecalis , Oligopéptidos/química , Feromonas/química , Secuencia de Aminoácidos , Sitios de Unión , Rastreo Diferencial de Calorimetría , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Homología Estructural de Proteína , Temperatura de Transición
15.
Biochemistry ; 51(25): 5142-52, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22656643

RESUMEN

The ATP-binding-cassette transporter OpuA from Lactococcus lactis is composed of two ATPase subunits (OpuAA) and two subunits (OpuABC) with the transmembrane domain fused to an extracellular substrate-binding protein. Of the almost 1900 homologues of OpuA known to date, a subset has an amino-terminal amphipathic helix (plus extra transmembrane segment) fused to the core of the transmembrane domain of the OpuABC subunit. FRET measurements indicate that the amphipathic α-helix is located close to the membrane surface, where its hydrophobic face interacts with the transport protein rather than the membrane lipids. Next, we determined the functional role of this accessory region by engineering the amphipathic α-helix. We analyzed the consequence of the mutations in intact cells by monitoring growth and transport of glycine betaine under normal and osmotic stress conditions. More detailed studies were performed in hybrid membrane vesicles, proteoliposomes, and bilayer nanodisks. We show that the amphipathic α-helix of OpuA is necessary for high activity of OpuA but is not critical for the biogenesis of the protein or the ionic regulation of transport.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Lactococcus lactis/enzimología , Ósmosis/fisiología , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/biosíntesis , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Activación del Canal Iónico/fisiología , Metabolismo de los Lípidos/fisiología , Datos de Secuencia Molecular , Estructura Secundaria de Proteína/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Transporte de Proteínas/fisiología , Proteolípidos/química , Proteolípidos/metabolismo , Proteolípidos/fisiología
16.
J Biol Chem ; 286(43): 37280-91, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21878634

RESUMEN

The cystathionine ß-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine ß-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Cistationina betasintasa , Lactococcus lactis/enzimología , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte Biológico/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Lactococcus lactis/genética , Concentración Osmolar , Estructura Terciaria de Proteína
17.
Nat Protoc ; 3(2): 256-66, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18274528

RESUMEN

In this protocol, we describe a procedure for incorporating ATP-binding cassette (ABC) transporters into large unilamellar vesicles (LUVs) and assays to determine ligand binding and solute translocation by these membrane-reconstituted systems. The reconstitution technique as described has been optimized for ABC transporters but can be readily adapted for other types of transport systems. Purified transporters are inserted into detergent-destabilized preformed liposomes and detergent is subsequently removed by adsorption onto polystyrene beads. Next, Mg-ATP or an ATP-regenerating system is incorporated into the vesicle lumen by one or more cycles of freezing-thawing, followed by extrusion through polycarbonate filters to obtain unilamellar vesicles. Binding and translocation of substrates are measured using isotope-labeled ligands and rapid filtration to separate the proteoliposomes from the surrounding medium. Quantitative information is obtained about dissociation constants (K(d)) for ligand binding, number of binding-sites, transport affinities (K(m)), rates of transport, and the activities of transporter molecules with opposite orientations in the membrane. The full protocol can be completed within 4-5 d.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Membranas/fisiología , Liposomas Unilamelares/metabolismo , Transporte Biológico , Detergentes , Lípidos de la Membrana , Proteínas de Transporte de Membrana/química , Octoxinol
18.
Biochim Biophys Acta ; 1778(1): 324-33, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17980144

RESUMEN

GlcV is the nucleotide binding domain of the ABC-type glucose transporter of the hyperthermoacidophile Sulfolobus solfataricus. GlcV consists of two domains, an N-terminal domain containing the typical nucleotide binding-fold and a C-terminal beta-barrel domain with unknown function. The unfolding and structural stability of the wild-type (wt) protein and three mutants that are blocked at different steps in the ATP hydrolytic cycle were studied. The G144A mutant is unable to dimerize, while the E166A and E166Q mutants are defective in ATP hydrolysis and dimer dissociation. Unfolding of the wt GlcV and G144A GlcV occurred with a single transition, whereas the E166A and E166Q mutants showed a second transition at a higher melting temperature indicating an increased stability of the ABCalpha/beta subdomain. The structural stability of GlcV was increased in the presence of nucleotides suggesting that the transition corresponds to the unfolding of the NBD domain. Unfolding of the C-terminal domain appears to occur at temperatures above the unfolding of the NBD which coincides with the aggregation of the protein. Analysis of the domain organization of GlcV by trypsin digestion demonstrates cleavage of the NBD domain into three fragments, while nucleotides protect against proteolysis. The cleaved GlcV protein retained the ability to bind nucleotides and to dimerize. These data indicate that the wt GlcV NBD domain unfolds as a single domain protein, and that its stability is modified by mutations in the glutamate after the Walker B motif and by nucleotide binding.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Facilitadoras del Transporte de la Glucosa/química , Sulfolobus solfataricus/química , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Azidas/farmacología , Rastreo Diferencial de Calorimetría , Reactivos de Enlaces Cruzados/farmacología , Guanidina/farmacología , Datos de Secuencia Molecular , Proteínas Mutantes/química , Mutación/genética , Nucleótidos/metabolismo , Etiquetas de Fotoafinidad , Pliegue de Proteína , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Terciaria de Proteína , Alineación de Secuencia , Sulfolobus solfataricus/efectos de los fármacos , Termodinámica , Temperatura de Transición , Tripsina/metabolismo
19.
Biochemistry ; 45(50): 15056-67, 2006 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-17154543

RESUMEN

ATP-binding cassette transporters drive the transport of substrates across the membrane by the hydrolysis of ATP. They typically have a conserved domain structure with two membrane-spanning domains that form the transport channel and two cytosolic nucleotide-binding domains (NBDs) that energize the transport reaction. Binding of ATP to the NBD monomer results in formation of a NBD dimer. Hydrolysis of the ATP drives the dissociation of the dimer. The thermodynamics of distinct steps in the ATPase cycle of GlcV, the NBD of the glucose ABC transporter of the extreme thermoacidophile Sulfolobus solfataricus, were studied by isothermal titration calorimetry using the wild-type protein and two mutants, which are arrested at different steps in the ATP hydrolytic cycle. The G144A mutant is unable to dimerize, while the E166A mutant is defective in dimer dissociation. The ATP, ADP, and AMP-PNP binding affinities, stoichiometries, and enthalpies of binding were determined at different temperatures. From these data, the thermodynamic parameters of nucleotide binding, NBD dimerization, and ATP hydrolysis were calculated. The data demonstrate that the ATP hydrolysis cycle of isolated NBDs consists of consecutive steps where only the final step of ADP release is energetically unfavorable.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Arqueales/química , Proteínas Facilitadoras del Transporte de la Glucosa/química , Sulfolobus solfataricus/enzimología , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfato/química , Proteínas Arqueales/genética , Transporte Biológico Activo/genética , Rastreo Diferencial de Calorimetría , Dimerización , Activación Enzimática/genética , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Hidrólisis , Mutación Missense , Termodinámica
20.
J Biol Chem ; 281(40): 29830-9, 2006 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16844687

RESUMEN

The ATPase subunit of the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis has a C-terminal extension, the tandem cystathionine beta-synthase (CBS) domain, which constitutes the sensor that allows the transporter to sense and respond to osmotic stress (Biemans-Oldehinkel, E., Mahmood, N. A. B. N., and Poolman, B. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 10624-10629). C-terminal of the tandem CBS domain is an 18-residue anionic tail (DIPDEDEVEEIEKEEENK). To investigate the ion specificity of the full transporter, we probed the activity of inside-out reconstituted wild-type OpuA and the anionic tail deletion mutant OpuADelta12; these molecules have the tandem CBS domains facing the external medium. At a mole fraction of 40% of anionic lipids in the membrane, the threshold ionic strength for activation of OpuA was approximately 0.15, irrespective of the electrolyte composition of the medium. At equivalent concentrations, bivalent cations (Mg(2+) and Ba(2+)) were more effective in activating OpuA than NH(4)(+), K(+), Na(+), or Li(+), consistent with an ionic strength-based sensing mechanism. Surprisingly, Rb(+) and Cs(+) were potent inhibitors of wild-type OpuA, and 0.1 mM RbCl was sufficient to completely inhibit the transporter even in the presence of 0.2 M KCl. Rb(+) and Cs(+) were no longer inhibitory in OpuADelta12, indicating that the anionic C-terminal tail participates in the formation of a binding site for large alkali metal ions. Compared with OpuADelta12, wild-type OpuA required substantially less potassium ions (the dominant ion under physiological conditions) for activation. Our data lend new support for the contention that the CBS module in OpuA constitutes the ionic strength sensor whose activity is modulated by the C-terminal anionic tail.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas/fisiología , Lactococcus lactis/metabolismo , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cationes Bivalentes/química , Cationes Monovalentes/química , Cistationina betasintasa/química , Cistationina betasintasa/fisiología , Lactococcus lactis/enzimología , Lactococcus lactis/fisiología , Metales/química , Datos de Secuencia Molecular , Concentración Osmolar , Cloruro de Potasio/química , Eliminación de Secuencia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA