Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Cartilage ; : 19476035231212608, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38041252

OBJECTIVE: Loose bodies are free-floating tissues of cartilage and bone that can cause pain, swelling, the inability to straighten the knee, or intermittent locking of the knee. Loose bodies can arise from degenerative joint disease, flake fractures, osteochondritis dissecans, or chondromatosis. We hypothesized that loose bodies can be classified in stages with tissue characteristics similar to endochondral ossification. DESIGN: Loose bodies were harvested from patients undergoing joint replacement. Samples were processed for histology, gene expression analysis, and micro-computed tomography (µCT). Cartilage- and bone-related genes and proteins were selected for immunofluorescence stainings (collagen type I, II, and X, SOX9 [SRY-box transcription factor 9], and MMP13 [matrix metalloproteinase 13]) and gene expression analysis (FN [fibronectin], COL1A1, COL2A1, COL10A1, SOX9, MMP13, and aggrecan [ACAN]). RESULTS: Loose bodies were grouped in 4 stages: fibrous, (mineralized) cartilaginous, cartilage and bone, and bone. Hyaline-like cartilage tissue with Benninghoff arcades was present in stages 2 and 3. A transition from cartilaginous to mineralized tissue and bone trabecula was defined by an increase in COL1A1 and COL10A1 (stage 3 vs. 4: p = 0.047) positive area. Stage 4 showed typical trabecular bone tissue. The relative volume of calcified tissue (mineralized cartilage and bone tissue) decreased with stages (stages 1-2 vs. 3: p = 0.002; stage 1-2 vs. 4: p = 0.012). COL2A1 expression and stained area decreased from stages 1-2 to 4 (p = 0.010 and p = 0.004). ACAN expression decreased from stage 1-2 to stage 3 (p = 0.049) and stage 4 (p = 0.002). CONCLUSION: Loose bodies show tissue characteristics similar to endochondral ossification. They are probably a relevant substrate for regenerative therapeutic interventions in joint disease.

2.
J Orthop Translat ; 41: 42-53, 2023 Jul.
Article En | MEDLINE | ID: mdl-37691639

Background: The use of acellular hydrogels to repair osteochondral defects requires cells to first invade the biomaterial and then to deposit extracellular matrix for tissue regeneration. Due to the diverse physicochemical properties of engineered hydrogels, the specific properties that allow or even improve the behaviour of cells are not yet clear. The aim of this study was to investigate the influence of various physicochemical properties of hydrogels on cell migration and related tissue formation using in vitro, ex vivo and in vivo models. Methods: Three hydrogel platforms were used in the study: Gelatine methacryloyl (GelMA) (5% wt), norbornene hyaluronic acid (norHA) (2% wt) and tyramine functionalised hyaluronic acid (THA) (2.5% wt). GelMA was modified to vary the degree of functionalisation (DoF 50% and 80%), norHA was used with varied degradability via a matrix metalloproteinase (MMP) degradable crosslinker and THA was used with the addition of collagen fibrils. The migration of human mesenchymal stromal cells (hMSC) in hydrogels was studied in vitro using a 3D spheroid migration assay over 48h. In addition, chondrocyte migration within and around hydrogels was investigated in an ex vivo bovine cartilage ring model (three weeks). Finally, tissue repair within osteochondral defects was studied in a semi-orthotopic in vivo mouse model (six weeks). Results: A lower DoF of GelMA did not affect cell migration in vitro (p â€‹= â€‹0.390) and led to a higher migration score ex vivo (p â€‹< â€‹0.001). The introduction of a MMP degradable crosslinker in norHA hydrogels did not improve cell infiltration in vitro or in vivo. The addition of collagen to THA resulted in greater hMSC migration in vitro (p â€‹= â€‹0.031) and ex vivo (p â€‹< â€‹0.001). Hydrogels that exhibited more cell migration in vitro or ex vivo also showed more tissue formation in the osteochondral defects in vivo, except for the norHA group. Whereas norHA with a degradable crosslinker did not improve cell migration in vitro or ex vivo, it did significantly increase tissue formation in vivo compared to the non-degradable crosslinker (p â€‹< â€‹0.001). Conclusion: The modification of hydrogels by adapting DoF, use of a degradable crosslinker or including fibrillar collagen can control and improve cell migration and tissue formation for osteochondral defect repair. This study also emphasizes the importance of performing both in vitro and in vivo testing of biomaterials, as, depending on the material, the results might be affected by the model used.The translational potential of this article: This article highlights the potential of using acellular hydrogels to repair osteochondral defects, which are common injuries in orthopaedics. The study provides a deeper understanding of how to modify the properties of hydrogels to control cell migration and tissue formation for osteochondral defect repair. The results of this article also highlight that the choice of the used laboratory model can affect the outcome. Testing hydrogels in different models is thus advised for successful translation of laboratory results to the clinical application.

3.
Biomed Mater ; 18(6)2023 10 19.
Article En | MEDLINE | ID: mdl-37751763

Human tissues are characterized by complex composition and cellular and extracellular matrix (ECM) organization at microscopic level. In most of human tissues, cells and ECM show an anisotropic arrangement, which confers them specific properties.In vitro, the ability to closely mimic this complexity is limited. However, in the last years, extrusion bioprinting showed a certain potential for aligning cells and biomolecules, due to the application of shear stress during the bio-fabrication process. In this work, we propose a strategy to combine collagen (col) with tyramine-modified hyaluronic acid (THA) to obtain a printable col-THA bioink for extrusion bioprinting, solely-based on natural-derived components. Collagen fibers formation within the hybrid hydrogel, as well as collagen distribution and spatial organization before and after printing, were studied. For the validation of the biological outcome, fibroblasts were selected as cellular model and embedded in the col-THA matrix. Cell metabolic activity and cell viability, as well as cell distribution and alignment, were studied in the bioink before and after bioprinting. Results demonstrated successful collagen fibers formation within the bioink, as well as collagen anisotropic alignment along the printing direction. Furthermore, results revealed suitable biological properties, with a slightly reduced metabolic activity at day 1, fully recovered within the first 3 d post-cell embedding. Finally, results showed fibroblasts elongation and alignment along the bioprinting direction. Altogether, results validated the potential to obtain collagen-based bioprinted constructs, with both cellular and ECM anisotropy, without detrimental effects of the fabrication process on the biological outcome. This bioink can be potentially used for a wide range of applications in tissue engineering and regenerative medicine in which anisotropy is required.


Bioprinting , Tissue Scaffolds , Humans , Hyaluronic Acid , Printing, Three-Dimensional , Collagen , Tissue Engineering/methods , Bioprinting/methods
4.
Bioact Mater ; 26: 490-512, 2023 Aug.
Article En | MEDLINE | ID: mdl-37304336

As a highly specialized shock-absorbing connective tissue, articular cartilage (AC) has very limited self-repair capacity after traumatic injuries, posing a heavy socioeconomic burden. Common clinical therapies for small- to medium-size focal AC defects are well-developed endogenous repair and cell-based strategies, including microfracture, mosaicplasty, autologous chondrocyte implantation (ACI), and matrix-induced ACI (MACI). However, these treatments frequently result in mechanically inferior fibrocartilage, low cost-effectiveness, donor site morbidity, and short-term durability. It prompts an urgent need for innovative approaches to pattern a pro-regenerative microenvironment and yield hyaline-like cartilage with similar biomechanical and biochemical properties as healthy native AC. Acellular regenerative biomaterials can create a favorable local environment for AC repair without causing relevant regulatory and scientific concerns from cell-based treatments. A deeper understanding of the mechanism of endogenous cartilage healing is furthering the (bio)design and application of these scaffolds. Currently, the utilization of regenerative biomaterials to magnify the repairing effect of joint-resident endogenous stem/progenitor cells (ESPCs) presents an evolving improvement for cartilage repair. This review starts by briefly summarizing the current understanding of endogenous AC repair and the vital roles of ESPCs and chemoattractants for cartilage regeneration. Then several intrinsic hurdles for regenerative biomaterials-based AC repair are discussed. The recent advances in novel (bio)design and application regarding regenerative biomaterials with favorable biochemical cues to provide an instructive extracellular microenvironment and to guide the ESPCs (e.g. adhesion, migration, proliferation, differentiation, matrix production, and remodeling) for cartilage repair are summarized. Finally, this review outlines the future directions of engineering the next-generation regenerative biomaterials toward ultimate clinical translation.

6.
Bioact Mater ; 20: 627-637, 2023 Feb.
Article En | MEDLINE | ID: mdl-35846845

Neutrophils play a pivotal role in orchestrating the immune system response to biomaterials, the onset and resolution of chronic inflammation, and macrophage polarization. However, the neutrophil response to biomaterials and the consequent impact on tissue engineering approaches is still scarcely understood. Here, we report an in vitro culture model that comprehensively describes the most important neutrophil functions in the light of tissue repair. We isolated human primary neutrophils from peripheral blood and exposed them to a panel of hard, soft, naturally- and synthetically-derived materials. The overall trend showed increased neutrophil survival on naturally derived constructs, together with higher oxidative burst, decreased myeloperoxidase and neutrophil elastase and decreased cytokine secretion compared to neutrophils on synthetic materials. The culture model is a step to better understand the immune modulation elicited by biomaterials. Further studies are needed to correlate the neutrophil response to tissue healing and to elucidate the mechanism triggering the cell response and their consequences in determining inflammation onset and resolution.

7.
Acta Biomater ; 143: 253-265, 2022 04 15.
Article En | MEDLINE | ID: mdl-35240315

Material-assisted cartilage tissue engineering has limited application in cartilage treatment due to hypertrophic tissue formation and high cell counts required. This study aimed at investigating the potential of human mesenchymal stromal cell (hMSC) spheroids embedded in biomaterials to study the effect of biomaterial composition on cell differentiation. Pre-cultured (3 days, chondrogenic differentiation media) spheroids (250 cells/spheroid) were embedded in tyramine-modified hyaluronic acid (THA) and collagen type I (Col) composite hydrogels (four combinations of THA (12.5 vs 16.7 mg/ml) and Col (2.5 vs 1.7 mg/ml) content) at a cell density of 5 × 106 cells/ml (2 × 104 spheroids/ml). Macropellets derived from single hMSCs (2.5 × 105 cells, ScMP) or hMSC spheroids (2.5 × 105 cells, 103 spheroids, SpMP) served as control. hMSC differentiation was analyzed using glycosaminoglycan (GAG) quantification, gene expression analysis and (immuno-)histology. Embedding of hMSC spheroids in THA-Col induced chondrogenic differentiation marked by upregulation of aggrecan (ACAN) and COL2A1, and the production of GAGs . Lower THA led to more pronounced chondrogenic phenotype compared to higher THA content. Col content had no significant influence on hMSC chondrogenesis. Pellet cultures showed an upregulation in chondrogenic-associated genes and production of GAGs with less upregulation of hypertrophic-associated genes in SpMP culture compared to ScMP group. This study presents hMSC pre-culture in spheroids as promising approach to study chondrogenic differentiation after biomaterial encapsulation at low total cell count (5 × 106/ml) without compromising chondrogenic matrix production. This approach can be applied to assemble microtissues in biomaterials to generate large cartilage construct. STATEMENT OF SIGNIFICANCE: In vitro studies investigating the chondrogenic potential of biomaterials are limited due to the low cell-cell contact of encapsulated single cells. Here, we introduce the use of pre-cultured hMSC spheroids to study chondrogenesis upon encapsulation in a biomaterial. The use of spheroids takes advantage of the high cell-cell contact within each spheroid being critical in the early chondrogenesis of hMSCs. At a low seeding density of 5·106 cells/ml (2 × 104 spheroids/ml) we demonstrated hMSC chondrogenesis and cartilaginous matrix deposition. Our results indicate that the pre-culture might have a beneficial effect on hypertrophic gene expression without compromising chondrogenic differentiation. This approach has shown potential to assemble microtissues (here spheroids) in biomaterials to generate large cartilage constructs and to study the effect of biomaterial composition on cell alignment and migration.


Chondrogenesis , Mesenchymal Stem Cells , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Cartilage/metabolism , Cell Count , Cell Differentiation , Cells, Cultured , Chondrocytes , Humans , Hyaluronic Acid/pharmacology
9.
Bone Res ; 9(1): 46, 2021 Oct 27.
Article En | MEDLINE | ID: mdl-34707086

Tissue engineering is rapidly progressing toward clinical application. In the musculoskeletal field, there has been an increasing necessity for bone and cartilage replacement. Despite the promising translational potential of tissue engineering approaches, careful attention should be given to the quality of developed constructs to increase the real applicability to patients. After a general introduction to musculoskeletal tissue engineering, this narrative review aims to offer an overview of methods, starting from classical techniques, such as gene expression analysis and histology, to less common methods, such as Raman spectroscopy, microcomputed tomography, and biosensors, that can be employed to assess the quality of constructs in terms of viability, morphology, or matrix deposition. A particular emphasis is given to standards and good practices (GXP), which can be applicable in different sectors. Moreover, a classification of the methods into destructive, noninvasive, or conservative based on the possible further development of a preimplant quality monitoring system is proposed. Biosensors in musculoskeletal tissue engineering have not yet been used but have been proposed as a novel technology that can be exploited with numerous advantages, including minimal invasiveness, making them suitable for the development of preimplant quality control systems.

10.
Osteoarthr Cartil Open ; 3(2): 100173, 2021 Jun.
Article En | MEDLINE | ID: mdl-36474989

Objective: Cartilage defect treatment strategies are dependent on the lesion size and severity. Osteochondral explant models are a platform to test cartilage repair strategies ex vivo. Current models lack in mimicking the variety of clinically relevant defect scenarios. In this controlled laboratory study, an automated device (artificial tissue cutter, ARTcut®) was implemented to reproducibly create cartilage defects with controlled depth. In a pilot study, the effect of cartilage defect depth and oxygen tension on cartilage repair was investigated. Design: Osteochondral explants were isolated from porcine condyles. 4 â€‹mm chondral and full thickness defects were treated with either porcine chondrocytes (CHON) or co-culture of 20% CHON and 80% MSCs (MIX) embedded in collagen hydrogel. Explants were cultured with tissue specific media (without TGF-ß) under normoxia (20% O2) and physiological hypoxia (2% O2). After 28 days, immune-histological stainings (collagen II and X, aggrecan) were scored (modified Bern score, 3 independent scorer) to quantitatively compare treatment outcome. Results: ARTcut® represents a software-controlled device for creation of uniform cartilage defects. Comparing the scoring results of the MIX and the CHON treatment, a positive relation between oxygen tension and defect depth was observed. Low oxygen tension stimulated cartilaginous matrix deposition in MIX group in chondral defects and CHON treatment in full thickness defects. Conclusion: ARTcut® has proved a powerful tool to create cartilage defects and thus opens a wide range of novel applications of the osteochondral model, including the relation between oxygen tension and defect depth on cartilage repair.

11.
Chem Rev ; 120(19): 11028-11055, 2020 10 14.
Article En | MEDLINE | ID: mdl-32856892

Three-dimensional bioprinting uses additive manufacturing techniques for the automated fabrication of hierarchically organized living constructs. The building blocks are often hydrogel-based bioinks, which need to be printed into structures with high shape fidelity to the intended computer-aided design. For optimal cell performance, relatively soft and printable inks are preferred, although these undergo significant deformation during the printing process, which may impair shape fidelity. While the concept of good or poor printability seems rather intuitive, its quantitative definition lacks consensus and depends on multiple rheological and chemical parameters of the ink. This review discusses qualitative and quantitative methodologies to evaluate printability of bioinks for extrusion- and lithography-based bioprinting. The physicochemical parameters influencing shape fidelity are discussed, together with their importance in establishing new models, predictive tools and printing methods that are deemed instrumental for the design of next-generation bioinks, and for reproducible comparison of their structural performance.


Bioprinting , Ink , Printing, Three-Dimensional , Tissue Engineering , Humans
12.
Adv Mater ; 30(28): e1706754, 2018 Jul.
Article En | MEDLINE | ID: mdl-29847704

An integral approach toward in situ tissue engineering through scaffolds that mimic tissue with regard to both tissue architecture and biochemical composition is presented. Monolithic osteochondral and meniscus scaffolds are prepared with tissue analog layered biochemical composition and perpendicularly oriented continuous micropores by a newly developed cryostructuring technology. These scaffolds enable rapid cell ingrowth and induce zonal-specific matrix synthesis of human multipotent mesenchymal stromal cells solely through their design without the need for supplementation of soluble factors such as growth factors.


Stem Cells , Chondrocytes , Humans , Meniscus , Mesenchymal Stem Cells , Molecular Mimicry , Tissue Engineering , Tissue Scaffolds
13.
J Theor Biol ; 439: 1-13, 2018 02 14.
Article En | MEDLINE | ID: mdl-29203122

The differentiation of mesenchymal stem cells (MSCs) into chondrocytes (native cartilage cells), or chondrogenesis, is a key step in the tissue engineering of articular cartilage, where the motility and high proliferation rate of MSCs used as seed cells are exploited. Chondrogenesis is regulated by transforming growth factor-beta (TGF-ß), a short-lived cytokine whose effect is prolonged by storage in the extracellular matrix. Tissue engineering applications require the complete differentiation of an initial population of MSCs, and two common strategies used to achieve this in vitro are (1) co-culture the MSCs with chondrocytes, which constitutively produce TGF-ß; or (2) add exogenous TGF-ß. To investigate these strategies we develop an ordinary differential equation model of the interactions between TGF-ß, MSCs and chondrocyte. Here the dynamics of TGF-ß are much faster than those of the cell processes; this difference in time-scales is exploited to simplify subsequent model analysis. Using our model we demonstrate that under strategy 1 complete chondrogenesis will be induced if the initial proportion of chondrocytes exceeds a critical value. Similarly, under strategy 2 we find that there is a critical concentration of exogenous TGF-ß above which all MSCs will ultimately differentiate. Finally, we use the model to demonstrate the potential advantages of adopting a hybrid strategy where exogenous TGF-ß is added to a co-culture of MSCs and chondrocytes, as compared to using either strategy 1 or 2 in isolation.


Chondrocytes/cytology , Chondrogenesis , Coculture Techniques/methods , Mesenchymal Stem Cells/cytology , Models, Theoretical , Transforming Growth Factor beta/pharmacology , Animals , Humans , Tissue Engineering/methods , Transforming Growth Factor beta/metabolism
14.
Tissue Eng Part B Rev ; 24(2): 155-169, 2018 04.
Article En | MEDLINE | ID: mdl-28990462

Millions of people worldwide suffer from trauma- or age-related orthopedic diseases such as osteoarthritis, osteoporosis, or cancer. Tissue Engineering (TE) and Regenerative Medicine are multidisciplinary fields focusing on the development of artificial organs, biomimetic engineered tissues, and cells to restore or maintain tissue and organ function. While allogenic and future autologous transplantations are nowadays the gold standards for both cartilage and bone defect repair, they are both subject to important limitations such as availability of healthy tissue, donor site morbidity, and graft rejection. Tissue engineered bone and cartilage products represent a promising and alternative approach with the potential to overcome these limitations. Since the development of Advanced Therapy Medicinal Products (ATMPs) such as TE products requires the knowledge of diverse regulation and an extensive communication with the national/international authorities, the aim of this review is therefore to summarize the state of the art on the clinical applications of human bone marrow-derived stromal cells for cartilage and bone TE. In addition, this review provides an overview of the European legislation to facilitate the development and commercialization of new ATMPs.


Bone Marrow Cells/metabolism , Bone and Bones/metabolism , Cartilage/metabolism , Mesenchymal Stem Cells/metabolism , Tissue Engineering/methods , Animals , Bone Marrow Cells/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/therapy , Bone Transplantation , Bone and Bones/pathology , Cartilage/pathology , Humans , Mesenchymal Stem Cells/pathology , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/therapy , Osteoporosis/metabolism , Osteoporosis/pathology , Osteoporosis/therapy , Tissue Engineering/legislation & jurisprudence , Tissue Engineering/standards
15.
ALTEX ; 34(2): 267-277, 2017.
Article En | MEDLINE | ID: mdl-27768805

There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone, which better represents the in vivo situation and enables supply of factors specific to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue. Next, we evaluated for how long we can preserve cartilage matrix stability of osteochondral explants during long-term culture over 84 days. Finally, we determined the optimal defect size that does not show spontaneous self-healing in this culture system. It was demonstrated that separated compartments for cartilage and bone in combination with tissue-specific medium allow for long-term culture of osteochondral explants while maintaining cartilage viability, matrix tissue content, structure and mechanical properties for at least 56 days. Furthermore, we could create critical size cartilage defects of different sizes in the model. The osteochondral model represents a valuable preclinical ex vivo tool for studying clinically relevant cartilage therapies, such as cartilage biomaterials, for their regenerative potential, for evaluation of drug and cell therapies, or to study mechanisms of cartilage regeneration. It will undoubtedly reduce the number of animals needed for in vivo testing.


Cartilage , Cell Culture Techniques/methods , Tissue Engineering/methods , Animal Testing Alternatives , Animals , Bone and Bones , Cartilage/cytology , Cells, Cultured , Chondrocytes/cytology , Models, Biological , Osteoblasts/cytology , Time Factors
16.
Nephrol Dial Transplant ; 30(2): 245-51, 2015 Feb.
Article En | MEDLINE | ID: mdl-25313168

BACKGROUND: Puumala virus (PUUV) is the most common species of hantavirus in Central Europe. Nephropathia epidemica (NE), caused by PUUV, is characterized by acute kidney injury (AKI) and thrombocytopenia. The major goals of this study were to provide a clear clinical phenotyping of AKI in patients with NE and to develop an easy prediction rule to identify patients, who are at lower risk to develop severe AKI. METHODS: A cross-sectional prospective survey of 456 adult patients with serologically confirmed NE was performed. Data were collected from medical records and prospectively at follow-up visit. Severe AKI was defined by standard criteria according to the RIFLE (Risk, Injury, Failure, Loss, End-stage kidney disease) classification. Fuller statistical models were developed and validated to estimate the probability for severe AKI. RESULTS: During acute NE, 88% of the patients had AKI according to the RILFE criteria during acute NE. A risk index score for severe AKI was derived by using three independent risk factors in patients with normal kidney function at time of diagnosis: thrombocytopenia [two points; odds ratios (OR): 3.77; 95% confidence intervals (CI): 1.82, 8.03], elevated C-reactive protein levels (one point; OR: 3.02; 95% CI: 1.42, 6.58) and proteinuria (one point; OR: 3.92; 95% CI: 1.33, 13.35). On the basis of a point score of one or two, the probability of severe AKI was 0.18 and 0.28 with an area under the curve of 0.71. CONCLUSION: This clinical prediction rule provides a novel and diagnostically accurate strategy for the potential prevention and improved management of kidney complications in patients with NE and, ultimately, for a possible decrease in unnecessary hospitalization in a high number of patients.


Acute Kidney Injury/virology , Hemorrhagic Fever with Renal Syndrome/virology , Orthohantavirus/pathogenicity , Acute Kidney Injury/diagnosis , Acute Kidney Injury/metabolism , Adult , Biomarkers/metabolism , C-Reactive Protein/metabolism , Cross-Sectional Studies , Female , Hemorrhagic Fever with Renal Syndrome/diagnosis , Hemorrhagic Fever with Renal Syndrome/metabolism , Humans , Male , Middle Aged , Odds Ratio , Prospective Studies , Proteinuria/diagnosis , Proteinuria/metabolism , Proteinuria/virology , Risk Factors , Severity of Illness Index , Thrombocytopenia/diagnosis , Thrombocytopenia/metabolism , Thrombocytopenia/virology
...