Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(23): 25239-25250, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882083

RESUMEN

The combination of isochoric heating of solids by free-electron lasers (FELs) and in situ diagnostics by X-ray Thomson scattering (XRTS) allows for measurements of material properties at warm dense matter (WDM) conditions relevant for astrophysics, inertial confinement fusion, and materials science. In the case of metals, the FEL beam pumps energy directly into electrons with the lattice structure of ions being nearly unaffected. This leads to a unique transient state that gives rise to a set of interesting physical effects, which can serve as a reliable testing platform for WDM theories. In this work, we present extensive linear-response time-dependent density functional theory (TDDFT) results for the electronic dynamic structure factor of isochorically heated copper with a face-centered cubic lattice. At ambient conditions, the plasmon is heavily damped due to the presence of d-band excitations, and its position is independent of the wavenumber. In contrast, the plasmon feature starts to dominate the excitation spectrum and has a Bohm-Gross-type plasmon dispersion for temperatures T ≥ 4 eV, where the quasi-free electrons in the interstitial region are in the WDM regime. In addition, we analyze the thermal changes in the d-band excitations and outline the possibility to use future XRTS measurements of isochorically heated copper as a controlled testbed for WDM theories.

2.
J Chem Phys ; 160(16)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38666571

RESUMEN

We present extensive new ab initio path integral Monte Carlo (PIMC) results for a variety of structural properties of warm dense hydrogen and beryllium. To deal with the fermion sign problem-an exponential computational bottleneck due to the antisymmetry of the electronic thermal density matrix-we employ the recently proposed [Y. Xiong and H. Xiong, J. Chem. Phys. 157, 094112 (2022); T. Dornheim et al., J. Chem. Phys. 159, 164113 (2023)] ξ-extrapolation method and find excellent agreement with the exact direct PIMC reference data where available. This opens up the intriguing possibility of studying a gamut of properties of light elements and potentially material mixtures over a substantial part of the warm dense matter regime, with direct relevance for astrophysics, material science, and inertial confinement fusion research.

3.
J Phys Chem Lett ; 15(5): 1305-1313, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38285536

RESUMEN

The accurate description of non-ideal quantum many-body systems is of prime importance for a host of applications within physics, quantum chemistry, materials science, and related disciplines. At finite temperatures, the gold standard is given by ab initio path integral Monte Carlo (PIMC) simulations, which do not require any empirical input but exhibit an exponential increase in the required computation time for Fermionic systems with an increase in system size N. Very recently, computing Fermionic properties without this bottleneck based on PIMC simulations of fictitious identical particles has been suggested. In our work, we use this technique to perform very large (N ≤ 1000) PIMC simulations of the warm dense electron gas and demonstrate that it is capable of providing a highly accurate description of the investigated properties, i.e., the static structure factor, the static density response function, and the local field correction, over the entire range of length scales.

4.
J Chem Theory Comput ; 20(1): 68-78, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38133546

RESUMEN

Hydrogen at extreme temperatures and pressures is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In addition, it is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In the present work, we present exact ab initio path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities. Using the well-known concept of reduced density gradients, we develop a new framework to identify the breaking of bound states due to pressure ionization in bulk hydrogen. Moreover, we use our PIMC results as a reference to rigorously assess the accuracy of a variety of exchange-correlation (XC) functionals in density functional theory calculations for different density regions. Here, a key finding is the importance of thermal XC effects for the accurate description of density gradients in high-energy-density systems. Our exact PIMC test set is freely available online and can be used to guide the development of new methodologies for the simulation of warm dense matter and beyond.

5.
J Chem Phys ; 158(16)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37093147

RESUMEN

The behavior of electrons during bond formation and breaking cannot commonly be accessed from experiments. Thus, bond perception is often based on chemical intuition or rule-based algorithms. Utilizing computational chemistry methods, we present intrinsic bond descriptors for the Diels-Alder reaction, allowing for an automatic bond perception. We show that these bond descriptors are available from localized orbitals and self-interaction correction calculations, e.g., from Fermi-orbital descriptors. The proposed descriptors allow a sparse, simple, and educational inspection of the Diels-Alder reaction from an electronic perspective. We demonstrate that bond descriptors deliver a simple visual representation of the concerted bond formation and bond breaking, which agrees with Lewis' theory of bonding.

6.
J Chem Phys ; 157(17): 174113, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36347676

RESUMEN

Sun et al. [J. Chem. Phys. 144, 191101 (2016)] suggested that common density-functional approximations (DFAs) should exhibit large energy errors for excited states as a necessary consequence of orbital nodality. Motivated by self-interaction corrected density-functional calculations on many-electron systems, we continue their study with the exactly solvable 1s, 2p, and 3d states of 36 hydrogenic one-electron ions (H-Kr35+) and demonstrate with self-consistent calculations that state-of-the-art DFAs indeed exhibit large errors for the 2p and 3d excited states. We consider 56 functionals at the local density approximation (LDA), generalized gradient approximation (GGA) as well as meta-GGA levels, and several hybrid functionals such as the recently proposed machine-learned DM21 local hybrid functional. The best non-hybrid functional for the 1s ground state is revTPSS. As predicted by Sun et al., the 2p and 3d excited states are more difficult for DFAs, and LDA functionals turn out to yield the most systematic accuracy for these states among non-hybrid functionals. The best performance for the three states overall is observed with the BHandH global hybrid GGA functional, which contains 50% Hartree-Fock exchange and 50% LDA exchange. The performance of DM21 is found to be inconsistent, yielding good accuracy for some states and systems and poor accuracy for others. Based on these results, we recommend including a variety of one-electron cations in future training of machine-learned density functionals.

7.
J Chem Phys ; 155(22): 224109, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34911315

RESUMEN

Fermi-Löwdin orbitals (FLOs) are a special set of localized orbitals, which have become commonly used in combination with the Perdew-Zunger self-interaction correction (SIC) in the FLO-SIC method. The FLOs are obtained for a set of occupied orbitals by specifying a classical position for each electron. These positions are known as Fermi-orbital descriptors (FODs), and they have a clear relation to chemical bonding. In this study, we show how FLOs and FODs can be used to initialize, interpret, and justify SIC solutions in a common chemical picture, both within FLO-SIC and in traditional variational SIC, and to locate distinct local minima in either of these approaches. We demonstrate that FLOs based on Lewis theory lead to symmetry breaking for benzene-the electron density is found to break symmetry already at the symmetric molecular structure-while ones from Linnett's double-quartet theory reproduce symmetric electron densities and molecular geometries. Introducing a benchmark set of 16 planar cyclic molecules, we show that using Lewis theory as the starting point can lead to artifactual dipole moments of up to 1 D, while Linnett SIC dipole moments are in better agreement with experimental values. We suggest using the dipole moment as a diagnostic of symmetry breaking in SIC and monitoring it in all SIC calculations. We show that Linnett structures can often be seen as superpositions of Lewis structures and propose Linnett structures as a simple way to describe aromatic systems in SIC with reduced symmetry breaking. The role of hovering FODs is also briefly discussed.

8.
J Comput Chem ; 42(9): 630-643, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33508162

RESUMEN

Accurate numerical calculations of porosities and related properties are of importance when analyzing metal-organic frameworks (MOFs). We present porE, an open-source, general-purpose implementation to compute such properties and discuss all results regarding their sensitivity to numerical parameters. Our code combines the numerical efficiency of Fortran with the user-friendliness of Python. Three different approaches to calculate porosities are implemented in porE, and their advantages and drawbacks are discussed. In contrast to commonly used implementations, our approaches are entirely deterministic and do not require any stochastic averaging. In addition to the calculation of porosities, porE can calculate pore size distributions and offers the possibility to analyze pore windows. The underlying approaches are outlined, and pore windows are discussed concerning their impact on the analyzed porosities. Comparisons with reference values aim for a clear differentiation between void and accessible porosities, which we provide for a small benchmark set consisting of eight MOFs. In addition, our approaches are used for a bigger benchmark set containing 370 MOFs, where we determine linear relationships within our approaches as well as to reference values. We show how these relationships can be used to derive corrections to a give porosity approach, minimizing its mean error. As a highlight we show how complex workflows can be designed with a few lines of Python code using porE.

9.
J Chem Phys ; 153(8): 084104, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872868

RESUMEN

We present pyflosic, an open-source, general-purpose python implementation of the Fermi-Löwdin orbital self-interaction correction (FLO-SIC), which is based on the python simulation of chemistry framework (pyscf) electronic structure and quantum chemistry code. Thanks to pyscf, pyflosic can be used with any kind of Gaussian-type basis set, various kinds of radial and angular quadrature grids, and all exchange-correlation functionals within the local density approximation, generalized-gradient approximation (GGA), and meta-GGA provided in the libxc and xcfun libraries. A central aspect of FLO-SIC is the Fermi-orbital descriptors, which are used to estimate the self-interaction correction. Importantly, they can be initialized automatically within pyflosic; they can also be optimized within pyflosic with an interface to the atomic simulation environment, a python library that provides a variety of powerful gradient-based algorithms for geometry optimization. Although pyflosic has already facilitated applications of FLO-SIC to chemical studies, it offers an excellent starting point for further developments in FLO-SIC approaches, thanks to its use of a high-level programming language and pronounced modularity.

10.
J Comput Chem ; 40(32): 2843-2857, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31503364

RESUMEN

We present an interpretation of Fermi-orbital descriptors (FODs) and argue that these descriptors carry chemical bonding information. We show that a bond order derived from these FODs agrees well with reference values, and highlight that optimized FOD positions used within the Fermi-Löwdin orbital self-interaction correction (FLO-SIC) method correspond to expectations from Linnett's double-quartet theory, which is an extension of Lewis theory. This observation is independent of the underlying exchange-correlation functional, which is shown using the local spin density approximation, the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA), and the strongly constrained and appropriately normed meta-GGA. To make FOD positions generally accessible, we propose and discuss four independent methods for the generation of Fermi-orbital descriptors, their implementation as well as their advantages and drawbacks. In particular, we introduce a re-implementation of the electron force field, an approach based on the centers of mass of orbital densities, a Monte Carlo-based algorithm, and a method based on Lewis-like bonding information. All results are summarized with respect to future developments of FLO-SIC and related methods. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.

11.
J Chem Phys ; 150(17): 174102, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067878

RESUMEN

Semilocal approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but closely related noded ones. The Perdew-Zunger (PZ) self-interaction correction (SIC) to a semilocal approximation makes that approximation exact for all one-electron ground- or excited-state densities and accurate for stretched bonds. When the minimization of the PZ total energy is made over real localized orbitals, the orbital densities can be noded, leading to energy errors in many-electron systems. Minimization over complex localized orbitals yields nodeless orbital densities, which reduce but typically do not eliminate the SIC errors of atomization energies. Other errors of PZ SIC remain, attributable to the loss of the exact constraints and appropriate norms that the semilocal approximations satisfy, suggesting the need for a generalized SIC. These conclusions are supported by calculations for one-electron densities and for many-electron molecules. While PZ SIC raises and improves the energy barriers of standard generalized gradient approximations (GGAs) and meta-GGAs, it reduces and often worsens the atomization energies of molecules. Thus, PZ SIC raises the energy more as the nodality of the valence localized orbitals increases from atoms to molecules to transition states. PZ SIC is applied here, in particular, to the strongly constrained and appropriately normed (SCAN) meta-GGA, for which the correlation part is already self-interaction-free. This property makes SCAN a natural first candidate for a generalized SIC.

12.
J Comput Chem ; 40(6): 820-825, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30589095

RESUMEN

We derived, implemented, and thoroughly tested the complete analytic expression for atomic forces, consisting of the Hellmann-Feynman term and the Pulay correction, for the Fermi-Löwdin orbital self-interaction correction (FLO-SIC) method. Analytic forces are shown to be numerically accurate through an extensive comparison to forces obtained from finite differences. Using the analytic forces, equilibrium structures for a small set of molecules were obtained. This work opens the possibility of routine self-interaction free geometrical relaxations of molecules using the FLO-SIC method. © 2018 Wiley Periodicals, Inc.

13.
J Comput Chem ; 39(29): 2463-2471, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30306597

RESUMEN

The Fermi-Löwdin orbital self-interaction correction (FLO-SIC) methodology is applied to atoms and molecules from the standard G2-1 test set. For the first time FLO-SIC results for the GGA-type PBE functional are presented. In addition, examples where FLO-SIC like any proper SIC provides qualitative improvements compared to standard DFT functionals are discussed in detail: the dissociation limit for H 2 + , the step-wise linearity behavior for fractional occupation, as well as the significant reduction of the error of static polarizabilities. Further, ionization potentials and enthalpies of formation obtained by means of the FLO-SIC DFT method are compared to other SIC variants and experimental values. The self-interaction correction gives significant improvements if used with the LDA functional but shows worse performance in case of enthalpies of formation if the PBE-GGA functional is used. The errors are analyzed and the importance of the overbinding of hydrogen is discussed. © 2018 Wiley Periodicals, Inc.

14.
Phys Chem Chem Phys ; 20(38): 25039-25043, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30246822

RESUMEN

The pressure dependence of the 129Xe chemical shift in the metal-organic frameworks (MOFs) UiO-66 and UiO-67 (UiO - University of Oslo) has been investigated using both theory and experiment. The resulting chemical shift isotherms were analyzed with a theoretical approach based on model systems (as proposed by K. Trepte, J. Schaber, S. Schwalbe, F. Drache, I. Senkovska, S. Kaskel, J. Kortus, E. Brunner and G. Seifert, Phys. Chem. Chem. Phys., 2017, 19, 10020-10027) and experimental 129Xe NMR measurements at different pressures. All investigations were carried out at T = 237 K while the pressure range was chosen according to the maximum pressure at which Xe liquifies (p0 = 1.73 MPa or 17.3 bar), thus 0 < p ≤ p0. The theoretically predicted chemical shift isotherms agree well with the experimental ones. Additionally, a comparison of the chemical shift isotherms with volumetric adsorption isotherms was carried out to determine the similarities and differences of both isotherms.

15.
J Chem Theory Comput ; 13(12): 5823-5828, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29083900

RESUMEN

Fermi-Löwdin orbital self-interaction corrected density functional theory (FLO-SIC DFT) is applied to C3H5, NO3-, O3, and CH3. In general our results indicate that FLO-SIC does favor symmetric setups for molecules with nontrivial chemical bonding. Further we discuss two types of possible symmetry breaking. In the case of O3 a ground state density that breaks symmetry can be found for the symmetric molecular geometry that may be caused by insufficient treatment of correlation energy. The CH3 radical presents a second type of symmetry breaking were the lowest energy geometry becomes distorted. The latter highlights the importance of further development of approximate DFT functionals as well as further extensions of the FLO-SIC method to overcome such nonphysical artifacts.

16.
Phys Chem Chem Phys ; 19(15): 10020-10027, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28362453

RESUMEN

The NMR chemical shift of the xenon isotope 129Xe inside the metal-organic frameworks (MOFs) UiO-66 and UiO-67 (UiO - University of Oslo) has been investigated both with density functional theory (DFT) and in situ high-pressure 129Xe NMR measurements. The experiments reveal a decrease of the total chemical shift comparing the larger isoreticular MOF (UiO-67) with the smaller one (UiO-66), even though one may expect an increase due to the higher amount of adsorbed Xe atoms. We are able to calculate contributions to the chemical shift individually. This allows us to evaluate the shift inside the different pores independently. To compare the theoretical results with the experimental ones, we performed molecular dynamics simulations of Xe in the MOFs. For this purpose, the pores were completely filled with Xe to gain insight into the distribution of Xe at high pressures. The resulting trend of the total shift agrees well between the theoretical predictions and the experiments. Moreover, we are able to describe specific contributions to the total shift per pore, explaining the experimental behavior at an atomistic level.

17.
Dalton Trans ; 46(12): 3963-3979, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28265607

RESUMEN

The synthesis of four NiII formate complexes of the type [Ni(N∩N)n][O2CH]2 (2, adduct with 3/4 EtOH, N∩N = en, e[combining low line]thylen[combining low line]ediamine, n = 3; 4, N∩N = dien, N,N',N''-d[combining low line]i[combining low line]e[combining low line]thylen[combining low line]etriamine, n = 2), [Ni2(O2CH)4(H2O)(tmeda)2] (3, tmeda = N,N,N',N'-t[combining low line]etram[combining low line]ethyle[combining low line]thylened[combining low line]ia[combining low line]mine) and [{Ni(O2CH)2(pmdta)}2·H2O] (5, pmdta = N,N',N',N'',N''-p[combining low line]entam[combining low line]ethyld[combining low line]iethylenet[combining low line]ria[combining low line]mine) by a reaction of [{Ni(O2CH)2}·2H2O] (1) with the respective N-donor bases is reported. The structures of 2-5 in the solid state were determined by single X-ray structure analysis, revealing a discrete dinuclear structure of 3 and the formation of polymeric networks in the case of 2, 4 and 5 due to intermolecular hydrogen bonding. SQUID and ESR measurements of 3 evidenced a weak antiferromagnetic coupling between the NiII ions and an easy plane magnetic anisotropy. Accompanying quantum chemical studies of the magnetic properties and IR characteristics of 3 were performed to strengthen the conclusions drawn from experimentally obtained data. The thermal decomposition temperatures of 2-5 were determined by TG (thermogravimetry) and obtained residues were analyzed by PXRD (powder X-ray diffraction) measurements. The decomposition processes were completed at 207 (3), 215 (5), 250 (2) and 273 °C (4) and are shown to result in the formation of pure metallic nickel.

18.
Phys Chem Chem Phys ; 18(11): 8075-80, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26922864

RESUMEN

We present a first principles study of low-spin (LS)/high-spin (HS) screening for 3d metal centers in the metal organic framework (MOF) DUT-8(Ni). Various density functional theory (DFT) codes have been used to evaluate numerical and DFT related errors. We compare highly accurate all-electron implementations with the widely used plane wave approach. We present electronically and magnetically stable DUT-8(Ni) HS secondary building units (SBUs). In this work we show how to tune the magnetic and electronic properties of the original SBU only by changing the metal centers.

19.
Phys Chem Chem Phys ; 18(2): 1348, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26662206

RESUMEN

Correction for 'Electronic and magnetic properties of DUT-8(Ni)' by Kai Trepte et al., Phys. Chem. Chem. Phys., 2015, 17, 17122-17129.

20.
Phys Chem Chem Phys ; 17(26): 17122-9, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26067446

RESUMEN

First principles calculations using density functional theory (DFT) have been performed to investigate the electronic and magnetic properties of DUT-8(Ni) (DUT - Dresden University of Technology). This flexible metal-organic framework (MOF) exists in two crystalline forms: DUT-8(Ni)open and DUT-8(Ni)closed. To identify the energetically favoured magnetic ordering, the density of states (DOS) and the energy difference between a low-spin (LS) and a high-spin (HS) coupling ΔELS-HS for those crystalline structures have been computed. Calculations on supercells have been carried out to include a variety of different magnetic couplings beyond a single unit cell. Several molecular model systems have been employed to further investigate the magnetic behaviour by introducing a diversity of chemical environments to the magnetic centers. The magnetic ground state of both crystalline structures has been found to be the low-spin state (S = 0). This low-spin ordering can be seen in the DOS as well as from ΔELS-HS calculations. Additionally, the calculations on the supercells confirm that the local character of the ordering (i.e. within the Ni dimers) is the most favoured one. However, the model systems indicate a change from the low-spin (S = 0) to a high-spin (S ≠ 0) ordering by introducing certain alterations into the chemical environment. Such alterations could be incorporated into the crystalline systems which should lead to similar results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...