Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386003

RESUMEN

Touch sensation is primarily encoded by mechanoreceptors, called low-threshold mechanoreceptors (LTMRs), with their cell bodies in the dorsal root ganglia. Because of their great diversity in terms of molecular signature, terminal endings morphology, and electrophysiological properties, mirroring the complexity of tactile experience, LTMRs are a model of choice to study the molecular cues differentially controlling neuronal diversification. While the transcriptional codes that define different LTMR subtypes have been extensively studied, the molecular players that participate in their late maturation and in particular in the striking diversity of their end-organ morphological specialization are largely unknown. Here we identified the TALE homeodomain transcription factor Meis2 as a key regulator of LTMRs target-field innervation in mice. Meis2 is specifically expressed in cutaneous LTMRs, and its expression depends on target-derived signals. While LTMRs lacking Meis2 survived and are normally specified, their end-organ innervations, electrophysiological properties, and transcriptome are differentially and markedly affected, resulting in impaired sensory-evoked behavioral responses. These data establish Meis2 as a major transcriptional regulator controlling the orderly formation of sensory neurons innervating peripheral end organs required for light touch.


Asunto(s)
Proteínas de Homeodominio , Fenómenos Fisiológicos del Sistema Nervioso , Factores de Transcripción , Animales , Ratones , Regulación de la Expresión Génica , Mecanorreceptores , Células Receptoras Sensoriales , Factores de Transcripción/genética , Proteínas de Homeodominio/genética
2.
Neuron ; 106(5): 830-841.e3, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32208171

RESUMEN

Humans detect skin temperature changes that are perceived as warm or cool. Like humans, mice report forepaw skin warming with perceptual thresholds of less than 1°C and do not confuse warm with cool. We identify two populations of polymodal C-fibers that signal warm. Warm excites one population, whereas it suppresses the ongoing cool-driven firing of the other. In the absence of the thermosensitive TRPM2 or TRPV1 ion channels, warm perception was blunted, but not abolished. In addition, trpv1:trpa1:trpm3-/- triple-mutant mice that cannot sense noxious heat detected skin warming, albeit with reduced sensitivity. In contrast, loss or local pharmacological silencing of the cool-driven TRPM8 channel abolished the ability to detect warm. Our data are not reconcilable with a labeled line model for warm perception, with receptors firing only in response to warm stimuli, but instead support a conserved dual sensory model to unambiguously detect skin warming in vertebrates.


Asunto(s)
Fibras Nerviosas Amielínicas/fisiología , Nocicepción/fisiología , Percepción/fisiología , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPV/genética , Sensación Térmica/genética , Animales , Ratones , Ratones Noqueados , Mutación , Umbral Sensorial , Sensación Térmica/fisiología , Extremidad Superior
3.
Sci Transl Med ; 10(462)2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305457

RESUMEN

The brush of a feather and a pinprick are perceived as distinct sensations because they are detected by discrete cutaneous sensory neurons. Inflammation or nerve injury can disrupt this sensory coding and result in maladaptive pain states, including mechanical allodynia, the development of pain in response to innocuous touch. However, the molecular mechanisms underlying the alteration of mechanical sensitization are poorly understood. In mice and humans, loss of mechanically activated PIEZO2 channels results in the inability to sense discriminative touch. However, the role of Piezo2 in acute and sensitized mechanical pain is not well defined. Here, we showed that optogenetic activation of Piezo2-expressing sensory neurons induced nociception in mice. Mice lacking Piezo2 in caudal sensory neurons had impaired nocifensive responses to mechanical stimuli. Consistently, ex vivo recordings in skin-nerve preparations from these mice showed diminished Aδ-nociceptor and C-fiber firing in response to mechanical stimulation. Punctate and dynamic allodynia in response to capsaicin-induced inflammation and spared nerve injury was absent in Piezo2-deficient mice. These results indicate that Piezo2 mediates inflammation- and nerve injury-induced sensitized mechanical pain, and suggest that targeting PIEZO2 might be an effective strategy for treating mechanical allodynia.


Asunto(s)
Hiperalgesia/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Dolor/metabolismo , Potenciales de Acción , Animales , Conducta Animal , Capsaicina , Hiperalgesia/complicaciones , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Canales Iónicos/deficiencia , Ratones Noqueados , Neuronas/metabolismo , Nocicepción , Nociceptores/metabolismo , Dolor/complicaciones , Dolor/patología , Dolor/fisiopatología
4.
Front Mol Neurosci ; 11: 19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29472841

RESUMEN

A cGMP signaling cascade composed of C-type natriuretic peptide, the guanylyl cyclase receptor Npr2 and cGMP-dependent protein kinase I (cGKI) controls the bifurcation of sensory axons upon entering the spinal cord during embryonic development. However, the impact of axon bifurcation on sensory processing in adulthood remains poorly understood. To investigate the functional consequences of impaired axon bifurcation during adult stages we generated conditional mouse mutants of Npr2 and cGKI (Npr2fl/fl;Wnt1Cre and cGKIKO/fl;Wnt1Cre ) that lack sensory axon bifurcation in the absence of additional phenotypes observed in the global knockout mice. Cholera toxin labeling in digits of the hind paw demonstrated an altered shape of sensory neuron termination fields in the spinal cord of conditional Npr2 mouse mutants. Behavioral testing of both sexes indicated that noxious heat sensation and nociception induced by chemical irritants are impaired in the mutants, whereas responses to cold sensation, mechanical stimulation, and motor coordination are not affected. Recordings from C-fiber nociceptors in the hind limb skin showed that Npr2 function was not required to maintain normal heat sensitivity of peripheral nociceptors. Thus, the altered behavioral responses to noxious heat found in Npr2fl/fl;Wnt1Cre mice is not due to an impaired C-fiber function. Overall, these data point to a critical role of axonal bifurcation for the processing of pain induced by heat or chemical stimuli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA