Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38490196

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Brain , Interferon Type I , Microglia , Animals , Mice , Interferon Type I/metabolism , Microglia/metabolism , Neurons/metabolism , Zebrafish , Brain/cytology , Brain/growth & development
2.
bioRxiv ; 2023 Aug 31.
Article En | MEDLINE | ID: mdl-37693484

SNCAIP duplication may promote Group 4 medulloblastoma via induction of PRDM6, a poorly characterized member of the PRDF1 and RIZ1 homology domain-containing (PRDM) family of transcription factors. Here, we investigated the function of PRDM6 in human hindbrain neuroepithelial stem cells and tested PRDM6 as a driver of Group 4 medulloblastoma. We report that human PRDM6 localizes predominantly to the nucleus, where it causes widespread repression of chromatin accessibility and complex alterations of gene expression patterns. Genome-wide mapping of PRDM6 binding reveals that PRDM6 binds to chromatin regions marked by histone H3 lysine 27 trimethylation that are located within, or proximal to, genes. Moreover, we show that PRDM6 expression in neuroepithelial stem cells promotes medulloblastoma. Surprisingly, medulloblastomas derived from PRDM6-expressing neuroepithelial stem cells match human Group 3, but not Group 4, medulloblastoma. We conclude that PRDM6 expression has oncogenic potential but is insufficient to drive Group 4 medulloblastoma from neuroepithelial stem cells. We propose that both PRDM6 and additional factors, such as specific cell-of-origin features, are required for Group 4 medulloblastoma. Given the lack of PRDM6 expression in normal tissues and its oncogenic potential shown here, we suggest that PRDM6 inhibition may have therapeutic value in PRDM6-expressing medulloblastomas.

3.
bioRxiv ; 2023 Mar 20.
Article En | MEDLINE | ID: mdl-35233577

Microglia are brain resident phagocytes that can engulf synaptic components and extracellular matrix as well as whole neurons. However, whether there are unique molecular mechanisms that regulate these distinct phagocytic states is unknown. Here we define a molecularly distinct microglial subset whose function is to engulf neurons in the developing brain. We transcriptomically identified a cluster of Type I interferon (IFN-I) responsive microglia that expanded 20-fold in the postnatal day 5 somatosensory cortex after partial whisker deprivation, a stressor that accelerates neural circuit remodeling. In situ, IFN-I responsive microglia were highly phagocytic and actively engulfed whole neurons. Conditional deletion of IFN-I signaling (Ifnar1fl/fl) in microglia but not neurons resulted in dysmorphic microglia with stalled phagocytosis and an accumulation of neurons with double strand DNA breaks, a marker of cell stress. Conversely, exogenous IFN-I was sufficient to drive neuronal engulfment by microglia and restrict the accumulation of damaged neurons. IFN-I deficient mice had excess excitatory neurons in the developing somatosensory cortex as well as tactile hypersensitivity to whisker stimulation. These data define a molecular mechanism through which microglia engulf neurons during a critical window of brain development. More broadly, they reveal key homeostatic roles of a canonical antiviral signaling pathway in brain development.

4.
Sci Rep ; 12(1): 13373, 2022 08 04.
Article En | MEDLINE | ID: mdl-35927309

Recent studies revealed classes of recurrent DNA double-strand breaks (DSBs) in neural stem/progenitor cells, including transcription-associated, promoter-proximal breaks and recurrent DSB clusters in late-replicating, long neural genes that may give rise to somatic brain mosaicism. The mechanistic factors promoting these different classes of DSBs in neural stem/progenitor cells are not understood. Here, we elucidated the genome-wide landscape of RNA:DNA hybrid structures called "R-loops" in primary neural stem/progenitor cells undergoing aphidicolin-induced, mild replication stress to assess the potential contribution of R-loops to the different, recurrent classes of DNA break "hotspots". We find that R-loops in neural stem/progenitor cells undergoing mild replication stress are present primarily in early-replicating, transcribed regions and in genes with promoter GC skew that are associated with cell lineage-specific processes. Surprisingly, most long, neural genes that form recurrent DSB clusters do not show R-loop formation under conditions of mild replication stress. Our findings are consistent with a role of R-loop-associated processes in promoter-proximal DNA break formation in highly transcribed, early replicating regions but suggest that R-loops do not drive replication stress-induced, recurrent DSB cluster formation in most long, neural genes.


Neural Stem Cells , R-Loop Structures , DNA/genetics , DNA Breaks, Double-Stranded , DNA Repair
6.
Neuro Oncol ; 24(2): 259-272, 2022 02 01.
Article En | MEDLINE | ID: mdl-34347086

BACKGROUND: Rigorous preclinical studies of chimeric antigen receptor (CAR) immunotherapy will require large quantities of consistent and high-quality CAR-transduced T (CART) cells that can be used in syngeneic mouse glioblastoma (GBM) models. To this end, we developed a novel transgenic (Tg) mouse strain with a fully murinized CAR targeting epidermal growth factor receptor variant III (EGFRvIII). METHODS: We first established the murinized version of EGFRvIII-CAR and validated its function using a retroviral vector (RV) in C57BL/6J mice bearing syngeneic SB28 GBM expressing EGFRvIII. Next, we created C57BL/6J-background Tg mice carrying the anti-EGFRvIII-CAR downstream of a Lox-Stop-Lox cassette in the Rosa26 locus. We bred these mice with CD4-Cre Tg mice to allow CAR expression on T cells and evaluated the function of the CART cells both in vitro and in vivo. To inhibit immunosuppressive myeloid cells within SB28 GBM, we also evaluated a combination approach of CART and an anti-EP4 compound (ONO-AE3-208). RESULTS: Both RV- and Tg-CART cells demonstrated specific cytotoxic activities against SB28-EGFRvIII cells. A single intravenous infusion of EGFRvIII-CART cells prolonged the survival of glioma-bearing mice when preceded by a lymphodepletion regimen with recurrent tumors displaying profound EGFRvIII loss. The addition of ONO-AE3-208 resulted in long-term survival in a fraction of CART-treated mice and those survivors demonstrated delayed growth of subcutaneously re-challenged both EGFRvIII+ and parental EGFRvIII- SB28. CONCLUSION: Our new syngeneic CAR Tg mouse model can serve as a useful tool to address clinically relevant questions and develop future immunotherapeutic strategies.


ErbB Receptors , Glioblastoma , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Animals , Cell Line, Tumor , Glioblastoma/pathology , Immunotherapy, Adoptive/methods , Mice , Mice, Inbred C57BL , Mice, Transgenic
7.
Cell Rep ; 36(10): 109666, 2021 09 07.
Article En | MEDLINE | ID: mdl-34496254

Although axonal damage induces rapid changes in gene expression in primary sensory neurons, it remains unclear how this process is initiated. The transcription factor ATF3, one of the earliest genes responding to nerve injury, regulates expression of downstream genes that enable axon regeneration. By exploiting ATF3 reporter systems, we identify topoisomerase inhibitors as ATF3 inducers, including camptothecin. Camptothecin increases ATF3 expression and promotes neurite outgrowth in sensory neurons in vitro and enhances axonal regeneration after sciatic nerve crush in vivo. Given the action of topoisomerases in producing DNA breaks, we determine that they do occur immediately after nerve damage at the ATF3 gene locus in injured sensory neurons and are further increased after camptothecin exposure. Formation of DNA breaks in injured sensory neurons and enhancement of it pharmacologically may contribute to the initiation of those transcriptional changes required for peripheral nerve regeneration.


Activating Transcription Factor 3/metabolism , Axons/metabolism , DNA Breaks/drug effects , DNA Topoisomerases, Type I/metabolism , Peripheral Nerve Injuries/metabolism , Sensory Receptor Cells/metabolism , Animals , DNA Topoisomerases, Type I/drug effects , Gene Expression/physiology , Mice, Inbred C57BL , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Neuronal Outgrowth/physiology , Sciatic Nerve/metabolism
8.
Nat Protoc ; 15(10): 3154-3181, 2020 10.
Article En | MEDLINE | ID: mdl-32778838

We provide a protocol for generating forebrain structures in vivo from mouse embryonic stem cells (ESCs) via neural blastocyst complementation (NBC). We developed this protocol for studies of development and function of specific forebrain regions, including the cerebral cortex and hippocampus. We describe a complete workflow, from methods for modifying a given genomic locus in ESCs via CRISPR-Cas9-mediated editing to the generation of mouse chimeras with ESC-reconstituted forebrain regions that can be directly analyzed. The procedure begins with genetic editing of mouse ESCs via CRISPR-Cas9, which can be accomplished in ~4-8 weeks. We provide protocols to achieve fluorescent labeling of ESCs in ~2-3 weeks, which allows tracing of the injected, ESC-derived donor cells in chimeras generated via NBC. Once modified ESCs are ready, NBC chimeras are generated in ~3 weeks via injection of ESCs into genetically programmed blastocysts that are subsequently transferred into pseudo-pregnant fosters. Our in vivo brain organogenesis platform is efficient, allowing functional and systematic analysis of genes and other genomic factors in as little as 3 months, in the context of a whole organism.


Brain Mapping/methods , Brain/embryology , Mouse Embryonic Stem Cells/physiology , Animals , Blastocyst , Cell Differentiation , Chimera , Female , Male , Mice , Organogenesis , Phenotype
9.
Nature ; 563(7729): 126-130, 2018 11.
Article En | MEDLINE | ID: mdl-30305734

Genetically modified mice are commonly generated by the microinjection of pluripotent embryonic stem (ES) cells into wild-type host blastocysts1, producing chimeric progeny that require breeding for germline transmission and homozygosity of modified alleles. As an alternative approach and to facilitate studies of the immune system, we previously developed RAG2-deficient blastocyst complementation2. Because RAG2-deficient mice cannot undergo V(D)J recombination, they do not develop B or T lineage cells beyond the progenitor stage2: injecting RAG2-sufficient donor ES cells into RAG2-deficient blastocysts generates somatic chimaeras in which all mature lymphocytes derive from donor ES cells. This enables analysis, in mature lymphocytes, of the functions of genes that are required more generally for mouse development3. Blastocyst complementation has been extended to pancreas organogenesis4, and used to generate several other tissues or organs5-10, but an equivalent approach for brain organogenesis has not yet been achieved. Here we describe neural blastocyst complementation (NBC), which can be used to study the development and function of specific forebrain regions. NBC involves targeted ablation, mediated by diphtheria toxin subunit A, of host-derived dorsal telencephalic progenitors during development. This ablation creates a vacant forebrain niche in host embryos that results in agenesis of the cerebral cortex and hippocampus. Injection of donor ES cells into blastocysts with forebrain-specific targeting of diphtheria toxin subunit A enables donor-derived dorsal telencephalic progenitors to populate the vacant niche in the host embryos, giving rise to neocortices and hippocampi that are morphologically and neurologically normal with respect to learning and memory formation. Moreover, doublecortin-deficient ES cells-generated via a CRISPR-Cas9 approach-produced NBC chimaeras that faithfully recapitulated the phenotype of conventional, germline doublecortin-deficient mice. We conclude that NBC is a rapid and efficient approach to generate complex mouse models for studying forebrain functions; this approach could more broadly facilitate organogenesis based on blastocyst complementation.


Blastocyst/cytology , Blastocyst/metabolism , Organogenesis , Prosencephalon/cytology , Prosencephalon/embryology , Animals , Chimera/embryology , Chimera/genetics , DNA-Binding Proteins/deficiency , Doublecortin Domain Proteins , Female , Genetic Complementation Test , Germ Cells/metabolism , Hippocampus/anatomy & histology , Hippocampus/cytology , Hippocampus/embryology , Hippocampus/physiology , Male , Mice , Mice, Transgenic , Microtubule-Associated Proteins/deficiency , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Neocortex/anatomy & histology , Neocortex/cytology , Neocortex/embryology , Neocortex/physiology , Neurons/cytology , Neurons/metabolism , Neuropeptides/deficiency , Phenotype , Prosencephalon/anatomy & histology , Prosencephalon/physiology
10.
DNA Repair (Amst) ; 71: 158-163, 2018 11.
Article En | MEDLINE | ID: mdl-30195640

Early work from about two decades ago implicated DNA double-strand break (DSB) formation and repair in neuronal development. Findings emerging from recent studies of DSBs in proliferating neural progenitors and in mature, non-dividing neurons suggest important roles of DSBs in brain physiology, aging, cancer, psychiatric and neurodegenerative disorders. We provide an overview of some findings and speculate on what may lie ahead.


DNA Breaks, Double-Stranded , DNA Repair , Neural Stem Cells/metabolism , Neurogenesis , Animals , DNA/metabolism , Genome , Genomic Instability , Humans , Neural Stem Cells/physiology
11.
Proc Natl Acad Sci U S A ; 115(8): 1919-1924, 2018 02 20.
Article En | MEDLINE | ID: mdl-29432181

We recently discovered 27 recurrent DNA double-strand break (DSB) clusters (RDCs) in mouse neural stem/progenitor cells (NSPCs). Most RDCs occurred across long, late-replicating RDC genes and were found only after mild inhibition of DNA replication. RDC genes share intriguing characteristics, including encoding surface proteins that organize brain architecture and neuronal junctions, and are genetically implicated in neuropsychiatric disorders and/or cancers. RDC identification relies on high-throughput genome-wide translocation sequencing (HTGTS), which maps recurrent DSBs based on their translocation to "bait" DSBs in specific chromosomal locations. Cellular heterogeneity in 3D genome organization allowed unequivocal identification of RDCs on 14 different chromosomes using HTGTS baits on three mouse chromosomes. Additional candidate RDCs were also implicated, however, suggesting that some RDCs were missed. To more completely identify RDCs, we exploited our finding that joining of two DSBs occurs more frequently if they lie on the same cis chromosome. Thus, we used CRISPR/Cas9 to introduce specific DSBs into each mouse chromosome in NSPCs that were used as bait for HTGTS libraries. This analysis confirmed all 27 previously identified RDCs and identified many new ones. NSPC RDCs fall into three groups based on length, organization, transcription level, and replication timing of genes within them. While mostly less robust, the largest group of newly defined RDCs share many intriguing characteristics with the original 27. Our findings also revealed RDCs in NSPCs in the absence of induced replication stress, and support the idea that the latter treatment augments an already active endogenous process.


DNA Breaks, Double-Stranded , Animals , Brain , DNA Repair , Gene Deletion , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Mice , Neural Stem Cells/metabolism , RNA Interference , Translocation, Genetic
12.
Proc Natl Acad Sci U S A ; 115(7): 1564-1569, 2018 02 13.
Article En | MEDLINE | ID: mdl-29378963

Sirtuins are an evolutionarily conserved family of NAD+-dependent deacylases that control metabolism, stress response, genomic stability, and longevity. Here, we show the sole mitochondrial sirtuin in Drosophila melanogaster, Sirt4, regulates energy homeostasis and longevity. Sirt4 knockout flies have a short lifespan, with increased sensitivity to starvation and decreased fertility and activity. In contrast, flies overexpressing Sirt4 either ubiquitously or specifically in the fat body are long-lived. Despite rapid starvation, Sirt4 knockout flies paradoxically maintain elevated levels of energy reserves, including lipids, glycogen, and trehalose, while fasting, suggesting an inability to properly catabolize stored energy. Metabolomic analysis indicates several specific pathways are affected in Sirt4 knockout flies, including glycolysis, branched-chain amino acid metabolism, and impaired catabolism of fatty acids with chain length C18 or greater. Together, these phenotypes point to a role for Sirt4 in mediating the organismal response to fasting, and ensuring metabolic homeostasis and longevity.


Animals, Genetically Modified/growth & development , Animals, Genetically Modified/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Longevity , Mitochondrial Proteins/metabolism , Sirtuins/metabolism , Animals , Animals, Genetically Modified/genetics , Drosophila melanogaster/genetics , Fasting/physiology , Female , Fertility/physiology , Glycolysis , Homeostasis , Male , Metabolomics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Sirtuins/genetics
14.
Proc Natl Acad Sci U S A ; 113(8): 2258-63, 2016 Feb 23.
Article En | MEDLINE | ID: mdl-26873106

High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.


DNA Breaks, Double-Stranded , Neural Stem Cells/metabolism , Transcription, Genetic , Translocation, Genetic , Animals , Ataxia Telangiectasia Mutated Proteins/deficiency , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , B-Lymphocytes/metabolism , Cells, Cultured , DNA End-Joining Repair , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genes, myc , Genes, p53 , Mice , Mice, Knockout , Proto-Oncogene Proteins c-myc/deficiency , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Transcription Initiation Site , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
Cell ; 164(4): 644-55, 2016 Feb 11.
Article En | MEDLINE | ID: mdl-26871630

Repair of DNA double-strand breaks (DSBs) by non-homologous end joining is critical for neural development, and brain cells frequently contain somatic genomic variations that might involve DSB intermediates. We now use an unbiased, high-throughput approach to identify genomic regions harboring recurrent DSBs in primary neural stem/progenitor cells (NSPCs). We identify 27 recurrent DSB clusters (RDCs), and remarkably, all occur within gene bodies. Most of these NSPC RDCs were detected only upon mild, aphidicolin-induced replication stress, providing a nucleotide-resolution view of replication-associated genomic fragile sites. The vast majority of RDCs occur in long, transcribed, and late-replicating genes. Moreover, almost 90% of identified RDC-containing genes are involved in synapse function and/or neural cell adhesion, with a substantial fraction also implicated in tumor suppression and/or mental disorders. Our characterization of NSPC RDCs reveals a basis of gene fragility and suggests potential impacts of DNA breaks on neurodevelopment and neural functions.


DNA Breaks , Neural Stem Cells/metabolism , Animals , Aphidicolin/pharmacology , Basic Helix-Loop-Helix Transcription Factors , Brain/cytology , Cell Adhesion , Cell Adhesion Molecules, Neuronal/metabolism , DNA Breaks/drug effects , DNA End-Joining Repair , DNA Repair , GPI-Linked Proteins/metabolism , Genome , Humans , Mice , Nerve Tissue Proteins/metabolism , Synapses , Transcription Factors/metabolism , Translocation, Genetic
16.
Proc Natl Acad Sci U S A ; 111(7): 2644-9, 2014 Feb 18.
Article En | MEDLINE | ID: mdl-24550291

Antibody class switch recombination (CSR) in B lymphocytes joins two DNA double-strand breaks (DSBs) lying 100-200 kb apart within switch (S) regions in the immunoglobulin heavy-chain locus (IgH). CSR-activated B lymphocytes generate multiple S-region DSBs in the donor Sµ and in a downstream acceptor S region, with a DSB in Sµ being joined to a DSB in the acceptor S region at sufficient frequency to drive CSR in a large fraction of activated B cells. Such frequent joining of widely separated CSR DSBs could be promoted by IgH-specific or B-cell-specific processes or by general aspects of chromosome architecture and DSB repair. Previously, we found that B cells with two yeast I-SceI endonuclease targets in place of Sγ1 undergo I-SceI-dependent class switching from IgM to IgG1 at 5-10% of normal levels. Now, we report that B cells in which Sγ1 is replaced with a 28 I-SceI target array, designed to increase I-SceI DSB frequency, undergo I-SceI-dependent class switching at almost normal levels. High-throughput genome-wide translocation sequencing revealed that I-SceI-generated DSBs introduced in cis at Sµ and Sγ1 sites are joined together in T cells at levels similar to those of B cells. Such high joining levels also occurred between I-SceI-generated DSBs within c-myc and I-SceI- or CRISPR/Cas9-generated DSBs 100 kb downstream within Pvt1 in B cells or fibroblasts, respectively. We suggest that CSR exploits a general propensity of intrachromosomal DSBs separated by several hundred kilobases to be frequently joined together and discuss the relevance of this finding for recurrent interstitial deletions in cancer.


B-Lymphocytes/immunology , DNA Breaks, Double-Stranded , DNA Repair/physiology , Immunoglobulin Class Switching/genetics , Immunoglobulin Heavy Chains/genetics , Neoplasms/genetics , Recombination, Genetic/genetics , DNA Primers/genetics , DNA Repair/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Neoplasms/immunology , Polymerase Chain Reaction , Saccharomyces cerevisiae Proteins/metabolism
17.
Carcinogenesis ; 34(7): 1476-86, 2013 Jul.
Article En | MEDLINE | ID: mdl-23514751

In this study, we report the identification of a novel role of SIRT6 in both epirubicin and paclitaxel resistance in breast cancer. We found that SIRT6 protein levels are elevated in paclitaxel- and epirubicin-resistant MCF-7 cells compared with the parental sensitive cells. SIRT6 knockout and depletion sensitized cells to both paclitaxel and epirubicin treatment, whereas SIRT6 ectopic overexpression led to increased resistance to paclitaxel and epirubicin. Moreover, our data suggest that SIRT6 could be mediating epirubicin resistance through enhancing the DNA repair response to epirubicin-induced DNA damage. Clonogenic assays also revealed that mouse embryonic fibroblasts (MEFs) lacking SIRT6 have decreased long-term viability in response to epirubicin. The tumour suppressor FOXO3a increases its levels of acetylation in MEFs depleted of SIRT6, whereas its induction by epirubicin is attenuated in breast cancer cells overexpressing SIRT6. Further cell viability studies demonstrate that deletion of FOXO1/3/4 in MEFs can confer sensitivity to both paclitaxel and epirubicin, suggesting that SIRT6 reduces paclitaxel and epirubicin sensitivity, at least in part, through modulating FOXO acetylation and expression. Consistently, immunohistochemical analysis of 118 breast cancer patient samples revealed that high SIRT6 nuclear staining is significantly associated with poorer overall survival (P = 0.018; Kaplan-Meier analysis). Multivariate Cox analysis demonstrated that nuclear SIRT6 staining remained associated with death after correcting for tumour stage and lymph-node involvement (P = 0.033). Collectively, our data suggest that SIRT6 has a role in paclitaxel and epirubicin sensitivity via targeting FOXO proteins and that SIRT6 could be a useful biomarker and therapeutic target for paclitaxel- and epirubicin-resistant cancer.


Breast Neoplasms/pathology , Drug Resistance, Neoplasm , Epirubicin/pharmacology , Paclitaxel/pharmacology , Sirtuins/metabolism , Acetylation , Animals , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Cell Death , Cell Nucleus/metabolism , Cell Survival/drug effects , DNA Damage , DNA Repair , Female , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Immunohistochemistry , Kaplan-Meier Estimate , MCF-7 Cells , Mice , Proportional Hazards Models , Sirtuins/genetics
18.
Cell ; 152(3): 417-29, 2013 Jan 31.
Article En | MEDLINE | ID: mdl-23374339

Chromosomal translocations involving antigen receptor loci are common in lymphoid malignancies. Translocations require DNA double-strand breaks (DSBs) at two chromosomal sites, their physical juxtaposition, and their fusion by end-joining. Ability of lymphocytes to generate diverse repertoires of antigen receptors and effector antibodies derives from programmed genomic alterations that produce DSBs. We discuss these lymphocyte-specific processes, with a focus on mechanisms that provide requisite DSB target specificity and mechanisms that suppress DSB translocation. We also discuss recent work that provides new insights into DSB repair pathways and the influences of three-dimensional genome organization on physiological processes and cancer genomes.


DNA Breaks, Double-Stranded , DNA Repair , Genomic Instability , Lymphocytes/metabolism , V(D)J Recombination , Animals , Humans , Lymphocytes/immunology , Lymphoma/genetics , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , Translocation, Genetic
19.
PLoS Genet ; 9(2): e1003298, 2013.
Article En | MEDLINE | ID: mdl-23408915

Single-stranded DNA binding proteins (SSBs) regulate multiple DNA transactions, including replication, transcription, and repair. We recently identified SSB1 as a novel protein critical for the initiation of ATM signaling and DNA double-strand break repair by homologous recombination. Here we report that germline Ssb1(-/-) embryos die at birth from respiratory failure due to severe rib cage malformation and impaired alveolar development, coupled with additional skeletal defects. Unexpectedly, Ssb1(-/-) fibroblasts did not exhibit defects in Atm signaling or γ-H2ax focus kinetics in response to ionizing radiation (IR), and B-cell specific deletion of Ssb1 did not affect class-switch recombination in vitro. However, conditional deletion of Ssb1 in adult mice led to increased cancer susceptibility with broad tumour spectrum, impaired male fertility with testicular degeneration, and increased radiosensitivity and IR-induced chromosome breaks in vivo. Collectively, these results demonstrate essential roles of Ssb1 in embryogenesis, spermatogenesis, and genome stability in vivo.


Carrier Proteins , DNA Breaks, Double-Stranded/radiation effects , DNA Repair , Nuclear Proteins , Suppressor of Cytokine Signaling Proteins , Animals , B-Lymphocytes/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromosome Breakage/radiation effects , DNA Repair/genetics , DNA Repair/radiation effects , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , Genomic Instability/genetics , Histones/genetics , Histones/metabolism , Homologous Recombination/genetics , Humans , Infertility, Male/genetics , Male , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Radiation Tolerance/genetics , Radiation, Ionizing , Signal Transduction/genetics , Spermatogenesis , Suppressor of Cytokine Signaling Proteins/deficiency , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Transcription Factors
20.
Proc Natl Acad Sci U S A ; 110(6): 2234-9, 2013 Feb 05.
Article En | MEDLINE | ID: mdl-23345432

Classical nonhomologous end joining (C-NHEJ) is a major mammalian DNA double-strand break (DSB) repair pathway that is required for assembly of antigen receptor variable region gene segments by V(D)J recombination. Recombination activating gene endonuclease initiates V(D)J recombination by generating DSBs between two V(D)J coding gene segments and flanking recombination signal sequences (RS), with the two coding ends and two RS ends joined by C-NHEJ to form coding joins and signal joins, respectively. During C-NHEJ, recombination activating gene factor generates two coding ends as covalently sealed hairpins and RS ends as blunt 5'-phosphorylated DSBs. Opening and processing of coding end hairpins before joining by C-NHEJ requires the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). However, C-NHEJ of RS ends, which do not require processing, occurs relatively normally in the absence of DNA-PKcs. The XRCC4-like factor (XLF) is a C-NHEJ component that is not required for C-NHEJ of chromosomal signal joins or coding joins because of functional redundancy with ataxia telangiectasia mutated kinase, a protein that also has some functional overlap with DNA-PKcs in this process. Here, we show that XLF has dramatic functional redundancy with DNA-PKcs in the V(D)J SJ joining process, which is nearly abrogated in their combined absence. Moreover, we show that XLF functionally overlaps with DNA-PKcs in normal mouse development, promotion of genomic stability in mouse fibroblasts, and in IgH class switch recombination in mature B cells. Our findings suggest that DNA-PKcs has fundamental roles in C-NHEJ processes beyond end processing that have been masked by functional overlaps with XLF.


DNA End-Joining Repair/physiology , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , V(D)J Recombination/physiology , Animals , Cell Line , DNA-Activated Protein Kinase/deficiency , DNA-Activated Protein Kinase/genetics , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Genomic Instability , Immunoglobulin Class Switching , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Precursor Cells, B-Lymphoid/immunology , Precursor Cells, B-Lymphoid/metabolism
...