Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Biochim Biophys Acta Biomembr ; 1864(10): 184004, 2022 10 01.
Article En | MEDLINE | ID: mdl-35841926

Although the incorporation of photo-activatable lipids into membranes potentially opens new avenues for studying interactions with peptides and proteins, the question of whether azide- or diazirine-modified lipids are suitable for such studies remains controversial. We have recently shown that diazirine-modified lipids can indeed form cross-links to membrane peptides after UV activation and that these cross-links can be precisely determined in their position by mass spectrometry (MS). However, we also observed an unexpected backfolding of the lipid's diazirine-containing stearoyl chain to the membrane interface challenging the potential application of this modified lipid for future cross-linking (XL)-MS studies of protein/lipid interactions. In this work, we compared an azide- (AzidoPC) and a diazirine-modified (DiazPC) membrane lipid regarding their self-assembly properties, their mixing behavior with saturated bilayer-forming phospholipids, and their reactivity upon UV activation using differential scanning calorimetry (DSC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and MS. Mixtures of both modified lipids with DMPC were further used for photo-chemically induced XL experiments with a transmembrane model peptide (KLAW23) to elucidate similarities and differences between the azide and the diazirine moiety. We showed that both photo-reactive lipids can be used to study lipid/peptide and lipid/protein interactions. The AzidoPC proved easier to handle, whereas the DiazPC had fewer degradation products and a higher cross-linking yield. However, the problem of backfolding occurs in both lipids; thus, it seems to be a general phenomenon.


Diazomethane , Membrane Lipids , Azides , Cross-Linking Reagents/chemistry , Diazomethane/chemistry , Mass Spectrometry/methods , Peptides , Scattering, Small Angle , X-Ray Diffraction
2.
Proc Natl Acad Sci U S A ; 119(25): e2202295119, 2022 06 21.
Article En | MEDLINE | ID: mdl-35696574

Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.


Caveolae , RNA-Binding Proteins , Caveolae/chemistry , Caveolin 1/chemistry , HEK293 Cells , Humans , Phosphatidylinositol 4,5-Diphosphate/chemistry , Protein Domains , Protein Transport , RNA-Binding Proteins/chemistry , Signal Transduction
3.
Chemistry ; 27(59): 14586-14593, 2021 Oct 21.
Article En | MEDLINE | ID: mdl-34406694

Although incorporation of photo-activatable lipids into membranes potentially opens up novel avenues for investigating interactions with proteins, the question of whether diazirine-modified lipids are suitable for such studies, remains under debate. Focusing on the potential for studying lipid/peptide interactions by cross-linking mass spectrometry (XL-MS), we developed a diazirine-modified lipid (DiazPC), and examined its behaviour in membranes incorporating the model α-helical peptide LAVA20. We observed an unexpected backfolding of the diazirine-containing stearoyl chain of the lipid. This surprising behaviour challenges the potential application of DiazPC for future XL-MS studies of peptide and protein/lipid interactions. The observations made for DiazPC most likely represent a general phenomenon for any type of membrane lipids with a polar moiety incorporated into the alkyl chain. Our finding is therefore of importance for future protein/lipid interaction studies relying on modified lipid probes.


Diazomethane , Membrane Lipids , Cross-Linking Reagents , Mass Spectrometry , Peptides
4.
Angew Chem Int Ed Engl ; 60(20): 11523-11530, 2021 05 10.
Article En | MEDLINE | ID: mdl-33599387

Membrane proteins are key players of the cell. Their structure and the interactions they form with their lipid environment are required to understand their function. Here we explore liposomes as membrane mimetics for mass spectrometric analysis of peripheral membrane proteins and peptides. Liposomes are advantageous over other membrane mimetics in that they are easy to prepare, can be varied in size and composition, and are suitable for functional assays. We demonstrate that they dissociate into lipid clusters in the gas phase of a mass spectrometer while intact protein and protein-lipid complexes are retained. We exemplify this approach by employing different liposomes including proteoliposomes of two model peptides/proteins differing in size. Our results pave the way for the general application of liposomes for mass spectrometric analysis of membrane-associated proteins.


Liposomes/chemistry , Membrane Proteins/chemistry , Peptides/chemistry , Mass Spectrometry , Molecular Structure
5.
Biophys J ; 120(8): 1333-1342, 2021 04 20.
Article En | MEDLINE | ID: mdl-33609496

Membrane insertion of protein domains is an important step in many membrane remodeling processes, for example, in vesicular transport. The membrane area taken up by the protein insertion influences the protein binding affinity as well as the mechanical stress induced in the membrane and thereby its curvature. To our knowledge, this is the first optical measurement of this quantity on a system in equilibrium with direct determination of the number of inserted protein and no further assumptions concerning the binding thermodynamics. Whereas macroscopic total area changes in lipid monolayers are typically measured on a Langmuir film balance, finding the number of inserted proteins without perturbing the system and quantitating any small area changes has posed a challenge. Here, we address both issues by performing two-color fluorescence correlation spectroscopy directly on the monolayer. With a fraction of the protein being fluorescently labeled, the number of inserted proteins is determined in situ without resorting to invasive techniques such as collecting the monolayer by aspiration. The second color channel is exploited to monitor a small fraction of labeled lipids to determine the total area increase. Here, we use this method to determine the insertion area per molecule of Sar1, a protein of the COPII complex, which is involved in transport vesicle formation. Sar1 has an N-terminal amphipathic helix, which is responsible for membrane binding and curvature generation. An insertion area of (3.4 ± 0.8) nm2 was obtained for Sar1 in monolayers from a lipid mixture typically used in COPII reconstitution experiments, in good agreement with the expected insertion area of the Sar1 amphipathic helix. By using the two-color approach, determining insertion areas relies only on local fluorescence measurements. No macroscopic area measurements are needed, giving the method the potential to also be applied to laterally heterogeneous monolayers and bilayers.


Lipid Bilayers , Lipids , Protein Binding , Spectrometry, Fluorescence , Thermodynamics
6.
Phys Chem Chem Phys ; 23(9): 5325-5339, 2021 Mar 11.
Article En | MEDLINE | ID: mdl-33634294

How does a small change in the structure of a phospholipid affect its supramolecular assembly? In aqueous suspensions, the substitution of one ester linkage in DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) by an ether linkage alters its phase behaviour completely. To unravel the effect of replacing a phospholipid's ester linkage by an ether linkage in lipid monolayers, we characterized pure monolayers of the model lipid DPPC and its sn-2 ether analogue PHPC (1-palmitoyl-2-O-hexadecyl-sn-glycero-3-phosphocholine) as well as mixtures of both by measurements of surface pressure-molecular area (π-Amol) isotherms. In addition, we used infrared reflection absorption spectroscopy (IRRAS) to study lipid condensation, lipid chain orientation, headgroup hydration, and lipid miscibility in all samples. Mixed monolayers consisting of DPPC and PHPC were studied further using epifluorescence microscopy. Our results indicate a strong influence of the sn-2 ether linkage on headgroup hydration and ordering effects in the regions of the apolar chains and the headgroups. Both effects could originate from changes in glycerol conformation. Furthermore, we observed a second plateau in the π-Amol isotherms of DPPC/PHPC mixtures and analysis of the mixed π-Amol isotherms reveals a non-ideal mixing behaviour of both lipids which may be caused by conformational differences in their headgroups.


1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , Lipid Bilayers/chemistry , Phospholipid Ethers/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Molecular Conformation , Principal Component Analysis , Surface Properties , Thermodynamics , Water
7.
Langmuir ; 36(43): 12804-12815, 2020 11 03.
Article En | MEDLINE | ID: mdl-33090001

In this study, we characterized monolayers of an azide-modified lipid at the air-water interface, pure and in its mixtures with the model lipid DPPC, with the aim of proving its potential to be applied for photo-cross-linking with other molecules. We chose a phospholipid bearing a terminal azide group in one of its hydrophobic tails to study its monolayer characteristics with the Langmuir film balance technique. Furthermore, we performed infrared reflection absorption spectroscopy (IRRAS) to get detailed insights into the organization of those monolayers as well as high-resolution mass spectrometry (HRMS) to see the effects of UV-irradiation on the lipids' chemical structure and organization. Our results suggest that in expanded monolayers of pure azide-modified membrane lipids, the azido-terminated chain folds back toward the air-water interface. Above the LE/LC (liquid-expanded/liquid-condensed) phase transition, the chains stretched, and thus, the azide group detaches from the interface. From temperature-dependent monolayer compressions, we evaluated all relevant thermodynamic parameters of the monolayers, such as the phase transition pressure, the critical temperature, and the triple point, and compare them to those of model lipids. For future applications, we studied the miscibility of the azide-modified lipid with DPPC in monolayers and found at least a certain miscibility over all investigated mixing ratios ranging from 10 to 75% of the azidolipid. Finally, we irradiated the azidolipid monolayer with UV light at 305 nm and measured photodissociation of the azide, leading to chemical cross-linking with other lipids, which shows the potential to be used as a cross-linking agent within self-assembled lipid or lipid/protein layers.

8.
Chem Phys Lipids ; 230: 104918, 2020 08.
Article En | MEDLINE | ID: mdl-32417099

The monolayer behavior of a l-DPPC derivative with a single fluorination in one of its terminal methyl groups (F-DPPC) at air-water interface was investigated by epifluorescence microscopy and infrared reflection absorption spectroscopy (IRRAS). Epifluorescence microscopy was utilized to study the shape and morphology of liquid-condensed (LC) domains observed upon compression of the film. IRRAS was employed for the determination of chain order and orientation. The shapes of LC-domains in a monolayer of F-DPPC are more dependent on the rate of compression than those of DPPC. The LC domains of F-DPPC display pronounced fractal growth patterns depending on the compression speed. The evolution of LC domain occurs under dominating electrostatic dipolar forces in F-DPPC. IRRAS measurements with the analysis of the frequency of the methylene stretching vibrations as a function of film compression show that the acyl chains in an F-DPPC monolayer in the LE-phase are more disordered than those in a DPPC film. The reason for the higher chain disorder in LE phase F-DPPC monolayers is a back folding of the fluorinated sn-2 chain terminus towards the air-water interface leading to larger molecular area requirement. Angular dependent IRRA spectra of monolayers at a surface pressure of 30 mN m-1 show that in the LC phase DPPC and F-DPPC exhibit a similar tilt of the acyl chains of ca. 28-30 ° relative to the surface normal. F-DPPC is ideally miscible with l-DPPC-d62 having the same chirality, as indicated by epifluorescence images and by IRRAS. However, the LC domains in an equimolar mixture of d-DPPC and F-DPPC having opposite chirality show multi-lobed complex domain patterns indicating chiral phase separation within LC domains.


1,2-Dipalmitoylphosphatidylcholine/chemistry , Microscopy, Fluorescence , Phosphatidylcholines/chemistry , Spectrophotometry, Infrared , Halogenation , Kinetics , Mechanical Phenomena , Stereoisomerism
9.
Langmuir ; 36(12): 3221-3233, 2020 03 31.
Article En | MEDLINE | ID: mdl-32109064

Phospholipid-coated targeted microbubbles are ultrasound contrast agents that can be used for molecular imaging and enhanced drug delivery. However, a better understanding is needed of their targeting capabilities and how they relate to microstructures in the microbubble coating. Here, we investigated the ligand distribution, lipid phase behavior, and their correlation in targeted microbubbles of clinically relevant sizes, coated with a ternary mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), with PEG40-stearate and DSPE-PEG2000. To investigate the effect of lipid handling prior to microbubble production in DSPC-based microbubbles, the components were either dispersed in aqueous medium (direct method) or first dissolved and mixed in an organic solvent (indirect method). To determine the lipid-phase behavior of all components, experiments were conducted on monolayers at the air/water interface. In comparison to pure DSPC and DPPC, the ternary mixtures had an additional transition plateau around 10-12 mN/m. As confirmed by infrared reflection absorption spectroscopy (IRRAS), this plateau was due to a transition in the conformation of the PEGylated components (mushroom to brush). While the condensed phase domains had a different morphology in the ternary DPPC and DSPC monolayers on the Langmuir trough, the domain morphology was similar in the coating of both ternary DPPC and DSPC microbubbles (1.5-8 µm diameter). The ternary DPPC microbubbles had a homogenous ligand distribution and significantly less liquid condensed (LC) phase area in their coating than the DSPC-based microbubbles. For ternary DSPC microbubbles, the ligand distribution and LC phase area in the coating depended on the lipid handling. The direct method resulted in a heterogeneous ligand distribution, less LC phase area than the indirect method, and the ligand colocalizing with the liquid expanded (LE) phase area. The indirect method resulted in a homogenous ligand distribution with the largest LC phase area. In conclusion, lipid handling prior to microbubble production is of importance for a ternary mixture of DSPC, PEG40-stearate, and DSPE-PEG2000.

10.
Langmuir ; 35(38): 12439-12450, 2019 09 24.
Article En | MEDLINE | ID: mdl-31456406

In this study, we describe the miscibility of four azide-modified membrane phospholipids (azidolipids) with conventional phospholipids. The azidolipids bear an azide group at different positions of the sn-1 or sn-2 alkyl chain and they further differ in the type of linkage (ester vs ether) of the sn-2 alkyl chain. Investigations regarding the miscibility of the azidolipids with bilayer-forming phosphatidylcholines will evaluate lipid mixtures that are suitable for the production of stable azidolipid-doped liposomes. These vesicles then serve as model membranes for the incorporation of model peptides or proteins in the future. The miscibility of both types of phospholipids was studied by calorimetric assays, electron microscopy, small-angle X-ray scattering, infrared spectroscopy, and dynamic light scattering to provide a complete biophysical characterization of the mixed systems.


Azides/chemistry , Phosphatidylcholines/chemistry , Models, Molecular , Molecular Conformation
11.
Langmuir ; 35(16): 5501-5508, 2019 04 23.
Article En | MEDLINE | ID: mdl-30908063

Liposomal membrane fusion is an important tool to study complex biological fusion mechanisms. We use lipidated derivatives of the specific heterodimeric coiled coil pair E: (EIAALEK)3 and K: (KIAALKE)3 to study and control the fusion of liposomes. In this model system, peptides are tethered to their liposomes via a poly(ethylene glycol) (PEG) spacer and a lipid anchor. The efficiency of the fusion mechanism and function of the peptides is highly affected by the PEG-spacer length and the lipid anchor type. Here, the influence of membrane-fusogen distance on the peptide-membrane interactions and the peptide secondary structures is studied with Langmuir film balance and infrared reflection absorption spectroscopy. We found that the introduction of a spacer to monolayer-tethered peptide E changes its conformation from solvated random coils to homo-oligomers. In contrast, the described peptide-monolayer interaction of peptide K is not affected by the PEG-spacer length. Furthermore, the coexistence of different conformations when both lipopeptides E and K are present at the membrane surface is demonstrated empirically, which has many implications for the design of effective fusogenic recognition units and the field of artificial membrane fusion.


Peptides/chemistry , Membrane Fusion , Particle Size , Polyethylene Glycols/chemistry , Protein Structure, Secondary , Surface Properties
12.
Biomater Sci ; 6(3): 478-492, 2018 Feb 27.
Article En | MEDLINE | ID: mdl-29446432

We report extended pH- and temperature-induced preparation procedures and explore the materials and molecular properties of different types of hydrogels made from human and bovine serum albumin, the major transport protein in the blood of mammals. We describe the diverse range of properties of these hydrogels at three levels: (1) their viscoelastic (macroscopic) behavior, (2) protein secondary structure changes during the gelation process (via ATR-FTIR spectroscopy), and (3) the hydrogel fatty acid (FA) binding capacity and derive from this the generalized tertiary structure through CW EPR spectroscopy. We describe the possibility of preparing hydrogels from serum albumin under mild conditions such as low temperatures (notably below albumin's denaturation temperature) and neutral pH value. As such, the proteins retain most of their native secondary structure. We find that all the combined data indicate a two-stage gelation process that is studied in detail. We summarize these findings and the explored dependences of the gels on pH, temperature, concentration, and incubation time by proposing phase diagrams for both HSA and BSA gel-states. As such, it has become possible to prepare gels that have the desired nanoscopic and macroscopic properties, which can, in future, be tested for, e.g., drug delivery applications.


Albumins/chemistry , Hydrogels/chemistry , Nanostructures/chemistry , Animals , Cattle , Fatty Acids/chemistry , Humans , Hydrogen-Ion Concentration , Phase Transition , Polymerization , Temperature
13.
Langmuir ; 33(43): 12204-12217, 2017 10 31.
Article En | MEDLINE | ID: mdl-28968121

Mixtures of anionic phospholipids (PG, PA, PS, and CL) with cationic peptides were cospread from a common organic solvent at the air-water interface. The compression of the mixed film was combined with epifluorescence microscopy or infrared reflection adsorption spectroscopy (IRRAS) to gain information on the interactions of the peptide with the different lipids. To evaluate the influence of the amino acid X of peptides with the sequence (KX)4K on the binding, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) was mixed with different peptides with increasing hydrophobicity of the uncharged amino acid X. The monolayer isotherms of DPPG/(KX)4K mixtures show an increased area for the lift-off due to incorporation of the peptide into the liquid-expanded (LE) state of the lipid. The surface pressure for the transition from LE to the liquid-condensed (LC) state is slightly increased for peptides with amino acids X with moderate hydrophobicity. For the most hydrophobic peptide (KL)4K two plateaus are seen at a charge ratio PG to K of 5:1, and a strongly increased transition pressure is observed for a charge ratio of 1:1. Epifluorescence microscopy images and infrared spectroscopy show that the lower plateau corresponds to the LE-LC phase transition of the lipid. The upper plateau is connected with a squeeze-out of the peptide into the subphase. To test the influence of the lipid headgroup structure on peptide binding (KL)4K was cospread with different anionic phospholipids. The shift of the isotherm to larger areas for lift-off and to higher surface pressure for the LE-LC phase transition was observed for all tested anionic lipids. Epifluorescence microscopy reveals the formation of LC domains with extended filaments indicating a decrease in line tension due to accumulation of the peptides at the LC-domain boundaries. This effect depends on the size of the headgroup of the anionic phospholipid.


Peptides/chemistry , Anions , Hydrophobic and Hydrophilic Interactions , Phospholipids , Surface Properties , Water
14.
Phys Chem Chem Phys ; 19(35): 23809-23816, 2017 Sep 13.
Article En | MEDLINE | ID: mdl-28621362

At low molecular areas, fluorocarbon-hydrocarbon diblocks (CnF2n+1CmH2m+1, FnHm), when spread as Langmuir monolayers on water, form organized monodisperse circular self-assembled domains, one molecule high and tens of nanometers in diameter. Whether such domains form at high molecular areas (low surface pressures) could until now not be established. Furthermore, the common assumption was that the inner core hydrocarbon chains within these domains were in the liquid state in order to compensate for the difference in the cross-section area between the perfluoroalkyl (∼30 Å2) and alkyl (∼20 Å2) chains. Our IRRAS investigation of F8H16 now establishes (1) that these diblock surface domains do exist at the air/water interface at large molecular areas (zero surface pressure), (2) that they remain essentially unchanged throughout film compression, and (3) that the H16 moieties are actually stretched in an all-trans configuration and tilted by ∼30° with respect to the normal to the monolayer in order to satisfy the greater space requirement of the F8 moieties. Consequently, the core of the domains is in an ordered, crystalline-like state, and the domains can be visualized as solid particles at the air/water interface.

15.
Proc Natl Acad Sci U S A ; 114(22): E4360-E4369, 2017 05 30.
Article En | MEDLINE | ID: mdl-28223496

The EH-domain-containing protein 2 (EHD2) is a dynamin-related ATPase that confines caveolae to the cell surface by restricting the scission and subsequent endocytosis of these membrane pits. For this, EHD2 is thought to first bind to the membrane, then to oligomerize, and finally to detach, in a stringently regulated mechanistic cycle. It is still unclear how ATP is used in this process and whether membrane binding is coupled to conformational changes in the protein. Here, we show that the regulatory N-terminal residues and the EH domain keep the EHD2 dimer in an autoinhibited conformation in solution. By significantly advancing the use of infrared reflection-absorption spectroscopy, we demonstrate that EHD2 adopts an open conformation by tilting the helical domains upon membrane binding. We show that ATP binding enables partial insertion of EHD2 into the membrane, where G-domain-mediated oligomerization occurs. ATP hydrolysis is related to detachment of EHD2 from the membrane. Finally, we demonstrate that the regulation of EHD2 oligomerization in a membrane-bound state is crucial to restrict caveolae dynamics in cells.


Carrier Proteins/chemistry , Carrier Proteins/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Substitution , Animals , Carrier Proteins/genetics , Caveolae/metabolism , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Mice , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrophotometry, Infrared
16.
Polymers (Basel) ; 9(11)2017 Oct 25.
Article En | MEDLINE | ID: mdl-30965858

We studied the interaction of amphiphilic and triphilic polymers with monolayers prepared from F-DPPC (1-palmitoyl-2-(16-fluoropalmitoyl)-sn-glycero-3-phosphocholine), a phospholipid with a single fluorine atom at the terminus of the sn-2 chain, an analogue of dipalmitoyl-phosphatidylcholine (DPPC). The amphiphilic block copolymers contained a hydrophobic poly(propylene oxide) block flanked by hydrophilic poly(glycerol monomethacrylate) blocks (GP). F-GP was derived from GP by capping both termini with perfluoro-n-nonyl segments. We first studied the adsorption of GP and F-GP to lipid monolayers of F-DPPC. F-GP was inserted into the monolayer up to a surface pressure Π of 42.4 mN m-1, much higher than GP (32.5 mN m-1). We then studied isotherms of lipid-polymer mixtures co-spread at the air-water interface. With increasing polymer content in the mixture a continuous shift of the onset of the liquid-expanded (LE) to liquid-condensed (LC) transition towards higher molecular and higher area per lipid molecule was observed. F-GP had a larger effect than GP indicating that it needed more space. At a Π-value of 32 mN m-1, GP was excluded from the mixed monolayer, whereas F-GP stayed in F-DPPC monolayers up to 42 mN m-1. F-GP is thus more stably anchored in the monolayer up to higher surface pressures. Images of mixed monolayers were acquired using different fluorescent probes and showed the presence of perfluorinated segments of F-GP at LE-LC domain boundaries.

17.
Polymers (Basel) ; 9(11)2017 Nov 14.
Article En | MEDLINE | ID: mdl-30965916

Membrane-interacting proteins are polyphilic polymers that engage in dynamic protein⁻protein and protein⁻lipid interactions while undergoing changes in conformation, orientation and binding interfaces. Predicting the sites of interactions between such polypeptides and phospholipid membranes is still a challenge. One example is the small eukaryotic GTPase Sar1, which functions in phospholipid bilayer remodeling and vesicle formation as part of the multimeric coat protein complex (COPII). The membrane interaction of Sar1 is strongly dependent on its N-terminal 23 amino acids. By monolayer adsorption experiments and infrared reflection-absorption spectroscopy (IRRAS), we elucidate the role of lipids in inducing the amphipathicity of this N-terminal stretch, which inserts into the monolayer as an amphipathic helix (AH). The AH inserting angle is determined and is consistent with the philicities and spatial distribution of the amino acid monomers. Using an advanced method of IRRAS data evaluation, the orientation of Sar1 with respect to the lipid layer prior to the recruitment of further COPII proteins is determined. The result indicates that only a slight reorientation of the membrane-bound Sar1 is needed to allow coat assembly. The time-course of the IRRAS analysis corroborates a role of slow GTP hydrolysis in Sar1 desorption from the membrane.

18.
Polymers (Basel) ; 9(8)2017 Jul 31.
Article En | MEDLINE | ID: mdl-30971002

Self-assembly of macromolecules with ligands is an intricate dynamic process that depends on a wide variety of parameters and forms the basis of many essential biological processes. We elucidate the underlying energetic processes of self-assembly in a model system consisting of amphiphilic core-shell polymers interacting with paramagnetic, amphiphilic ligand molecules from temperature-dependent continuous wave electron paramagnetic resonance (CW EPR) spectroscopy subsequent to spectral simulation. The involved processes as observed from the ligands' point of view are either based on temperature-dependent association constants (KA,j,k) or dynamic rotational regime interconversion (IC) constants (KIC,j,k). The interconversion process describes a transition from Brownian (b1) towards free (b2) diffusion of ligand. Both processes exhibit non-linear van't Hoff (lnK vs. T-1) plots in the temperature range of liquid water and we retrieve decisive dynamic information of the system from the energetic fingerprints of ligands on the nanoscale, especially from the temperature-dependent interconversion heat capacity (∆C°P,IC).

19.
Langmuir ; 32(32): 8102-15, 2016 08 16.
Article En | MEDLINE | ID: mdl-27442444

The interaction of amphiphilic and triphilic block copolymers with lipid monolayers has been studied. Amphiphilic triblock copolymer PGMA20-PPO34-PGMA20 (GP) is composed of a hydrophobic poly(propylene oxide) (PPO) middle block that is flanked by two hydrophilic poly(glycerol monomethacrylate) (PGMA) side blocks. The attachment of a perfluoro-n-nonyl residue (F9) to either end of GP yields a triphilic polymer with the sequence F9-PGMA20-PPO34-PGMA20-F9 (F-GP). The F9 chains are fluorophilic, i.e., they have a tendency to demix in hydrophilic as well as in lipophilic environments. We investigated (i) the adsorption of both polymers to differently composed lipid monolayers and (ii) the compression behavior of mixed polymer/lipid monolayers. The lipid monolayers are composed of phospholipids with PC or PE headgroups and acyl chains of different length and saturation. Both polymers interact with lipid monolayers by inserting their hydrophobic moieties (PPO, F9). The interaction is markedly enhanced in the presence of F9 chains, which act as membrane anchors. GP inserts into lipid monolayers up to a surface pressure of 30 mN/m, whereas F-GP inserts into monolayers at up to 45 mN/m, suggesting that F-GP also inserts into lipid bilayer membranes. The adsorption of both polymers to lipid monolayers with short acyl chains is favored. Upon compression, a two-step squeeze-out of F-GP occurs, with PPO blocks being released into the aqueous subphase at 28 mN/m and the F9 chains being squeezed out at 48 mN/m. GP is squeezed out in one step at 28 mN/m because of the lack of F9 anchor groups. The liquid expanded (LE) to liquid condensed (LC) phase transition of DPPC and DMPE is maintained in the presence of the polymers, indicating that the polymers can be accommodated in LE- and LC-phase monolayers. These results show how fluorinated moieties can be included in the rational design of membrane-binding polymers.

20.
J Colloid Interface Sci ; 437: 80-89, 2015 Jan 01.
Article En | MEDLINE | ID: mdl-25313470

The behavior of a series of amphiphilic triblock copolymers of poly(ethylene oxide) (PEO) and poly(isobutylene) (PIB); including both symmetric (same degree of polymerization (DP) of the terminal PEO blocks) PEOm-b-PIBn-b-PEOm and non-symmetric (different DP of the terminal PEO blocks) PEOm-b-PIBn-b-PEOz, is investigated at the air/water interface by measuring surface pressure vs mean molecular area isotherms (π vs mmA), Langmuir-Blodgett (LB) technique, and infrared reflection-absorption spectroscopy (IRRAS). The block copolymer (PEO32-b-PIB160-b-PEO32) with longer PEO segments forms a stable monolayer and the isotherm reveals a pseudo-plateau starting at π∼5.7 mN/m, also observed in the IRRAS, which is assigned to the pancake-to-brush transition related to the PEO dissolution into the subphase and subsequent PEO brush dehydration. Another plateau is observed at π∼40 mN/m, which is attributed to the film collapse due to multilayer formation. The pancake-to-brush transition could not be observed for samples with smaller PEO chains. The isotherms for block copolymers, with short PEO chains, both symmetric (PEO3-b-PIBn-b-PEO3) and non-symmetric (PEO12-b-PIBn-b-PEO3), reveal another transition at π∼20-25 mN/m. This is interpreted to be due to the conformational transition from a folded state where the middle PIB block is anchored to the water surface at both ends by the terminal hydrophilic segments to an unfolded state with PIB anchored to the water surface at one end. It is assumed that this transition involves the removal of PEO3 chains from the water surface in case of non-symmetric PEO12-b-PIB85-b-PEO3 and in case of symmetric, probably one PEO3 of each PEO3-b-PIB85-b-PEO3 chain. Because of the weaker interaction of the short PEO3 chains with the water surface as compared with the relatively longer PEO12 chains, the film of PEO3-b-PIB85-b-PEO3 collapses at much lower surface pressure after the transition as compared with the PEO12-b-PIB85-b-PEO3. The AFM images reveal the formation of microdomains of almost uniform height (6-7 nm) in LB films of PEO3-b-PIB85-b-PEO3 and PEO12-b-PIB85-b-PEO3 after transferring onto silicon surfaces. These domains are assumed to be the mesomorphic domains of ordered and folded PIB chains.


Polyenes/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Air , Microscopy, Atomic Force , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Water
...