Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Mech Behav Biomed Mater ; 143: 105916, 2023 07.
Article En | MEDLINE | ID: mdl-37224645

New studies have shown the great potential of the combination of in situ enzymatically cross-linked hydrogels based on tyramine derivative of hyaluronic acid (HA-TA) with platelet-rich plasma (PRP) and platelet lysate in regenerative medicine. This study describes how the presence of PRP and platelet lysate affects the kinetics of gelation, viscoelastic properties, swelling ratio, and the network structure of HA-TA hydrogels and how the encapsulation of PRP in hydrogels affects the bioactivity of released PRP determined as the ability to induce cell proliferation. The properties of hydrogels were tuned by a degree of substitution and concentration of HA-TA derivatives. The addition of platelet derivatives to the reaction mixture slowed down the cross-linking reaction and reduced elastic modulus (G') and thus cross-linking efficiency. However, low-swellable hydrogels (7-190%) suitable for soft tissue engineering with G' 200-1800 Pa were prepared with a gelation time within 1 min. It was confirmed that tested cross-linking reaction conditions are suitable for PRP incorporation because the total bioactivity level of PRP released from HA-TA hydrogels was ≥87% and HA-TA content in the hydrogels and thus mesh size (285-482 nm) has no significant effect on the bioactivity level of released PRP.


Hyaluronic Acid , Platelet-Rich Plasma , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Tyramine/analysis , Tyramine/chemistry , Tissue Engineering , Platelet-Rich Plasma/chemistry
2.
Macromol Biosci ; 23(4): e2200516, 2023 04.
Article En | MEDLINE | ID: mdl-36727251

Osteoarthritisis a highly prevalent musculoskeletal disorder characterized by degradation of cartilage and synovial fluid (SF). Platelet derivatives as platelet-rich plasma (PRP) and platelet lysate have great potential in the treatment of osteoarthritis because they contain biologically active substances including growth factors (GFs). Rapid release of GFs and their short biological half-life are factors that can limit the therapeutic impact of PRP therapy. Herein, the first work that describes hydrogels based on polyaldehyde derivative of hyaluronic acid (HA-OX) as carriers of platelet derivatives for in situ applications is presented, which can be a possible solution to the problem. HA-OX hydrogels containing 50% (w/w) of PRP or platelet lysate can be injected using a syringe due to low viscosity(<10 Pa s) and injection force (<20 N), and reach elastic modulus up to 2000 Pa. Insulin-like GF-1 and Platelet-derived GF-AB release from HA-OX hydrogels (mesh size 297-406 nm) by Fickian and non-Fickian diffusion respectively. The released PRP GFs maintain their ability to induce cell proliferation (87%-92%). Based on the obtained results, the unique concept of a new material that can restore viscoelastic properties of SF and at the same time gradually deliver GFs from platelet derivatives is designed.


Platelet-Rich Plasma , Viscosupplementation , Hyaluronic Acid/pharmacology , Viscosupplementation/methods , Synovial Fluid , Hydrogels/pharmacology , Cartilage , Intercellular Signaling Peptides and Proteins
3.
J Biomed Mater Res B Appl Biomater ; 110(12): 2595-2611, 2022 12.
Article En | MEDLINE | ID: mdl-35727166

Osteoarthritis (OA) is one of the most common musculoskeletal disorders in the world. OA is often associated with the loss of viscoelastic and tribological properties of synovial fluid (SF) due to degradation of hyaluronic acid (HA) by reactive oxygen species (ROS) and hyaluronidases. Viscosupplementation is one of the ways how to effectively restore SF functions. However, current viscosupplementation products provide only temporal therapeutic effect because of short biological half-life. In this article we describe a novel device for viscosupplementation (NV) based on the cross-linked tyramine derivative of HA, chondroitin sulfate (CS), and high molecular weight HA by online determination of viscoelastic properties loss during degradation by ROS and hyaluronidase. Rheological and tribological properties of developed viscosupplement were compared with HA solutions with different molecular weights in the range 500-2000 kDa, which are currently commonly used as medical devices for viscosupplementation treatment. Moreover, based on clinical practice and scientific literature all samples were also diluted by model OA SF in the ratio 1:1 (vol/vol) to better predict final properties after injection to the joint. The observed results confirmed that NV exhibits appropriate rheological properties (viscosity, elastic, and viscous moduli) comparable with healthy SF and maintain them during degradation for a significantly longer time than HA solutions with molecular weight in the range 500-2000 kDa and cross-linked material without CS.


Osteoarthritis, Knee , Osteoarthritis , Viscosupplementation , Chondroitin Sulfates/pharmacology , Humans , Hyaluronic Acid/pharmacology , Hyaluronoglucosaminidase/therapeutic use , Injections, Intra-Articular , Osteoarthritis/drug therapy , Reactive Oxygen Species , Tyramine/therapeutic use , Viscosupplementation/methods , Viscosupplements/therapeutic use
4.
Carbohydr Polym ; 216: 63-71, 2019 Jul 15.
Article En | MEDLINE | ID: mdl-31047083

The effect of hydrazide linkers on the formation and mechanical properties of hyaluronan hydrogels was intensively evaluated. The reaction kinetics of hydrazone formation was monitored by NMR spectroscopy under physiological conditions where polyaldehyde hyaluronan (unsaturated: ΔHA-CHO, saturated: HA-CHO) was reacted with various hydrazides to form hydrogels. Linear (adipic, oxalic dihydrazide) and branched (N,N´,N´´-tris(hexanoylhydrazide-6-yl)phosphoric triamide and 4-arm-PEG hydrazide) hydrazides were compared as crosslinking agents. The mechanical properties of hydrogels were also modified by attaching a hydrophobic chain to HA-CHO; however, it was found that this modification did not lead to an increase in hydrogel stiffness. Cytotoxicity tests showed that all tested hydrazide crosslinkers reduced the viability of cells only slightly, and that the final hyaluronan hydrogels were non-toxic materials.


Cross-Linking Reagents/chemistry , Hyaluronic Acid/analogs & derivatives , Hydrazines/chemistry , Hydrazones/chemistry , Hydrogels/chemistry , Acylation , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Cross-Linking Reagents/chemical synthesis , Cross-Linking Reagents/toxicity , Elastic Modulus , Hyaluronic Acid/chemical synthesis , Hyaluronic Acid/toxicity , Hydrazines/chemical synthesis , Hydrazines/toxicity , Hydrazones/chemical synthesis , Hydrazones/toxicity , Hydrogels/chemical synthesis , Hydrogels/toxicity , Hydrogen-Ion Concentration , Kinetics , Mice , Swiss 3T3 Cells
5.
RSC Adv ; 9(37): 21396-21404, 2019 Jul 05.
Article En | MEDLINE | ID: mdl-35521319

The adverse immune responses to implantable biomedical devices is a general problem with important consequences for the functionality of implants. Immunomodulatory soft hydrogel-based interfaces between the implant and the host can attenuate these reactions. Moreover, encapsulation of the patient's own immune cells into these interfaces can lead to the personalisation of implants from the immune reaction point of view. Herein, we described a co-crosslinkable composite hydrogel (composed of gelatin and hyaluronic acid), which could be used for the encapsulation of macrophages in the presence of an anti-inflammatory phenotype-fixing cytokine cocktail. To mimick the incoming immune cells on the coating surface in vivo, peripheral blood mononuclear cells were seeded on the hydrogels. The encapsulation of monocytic cells into the composite hydrogels in the presence of cytokine cocktails at 5× or 10× concentrations led to the spreading of the encapsulated cells instead of the formation of clusters. Moreover, the secretion of the anti-inflammatory cytokines IL-1RA and CCL-18 was significantly increased. The attachment of PBMC to the surface of the hydrogel is dependent on the hydrogel composition and also significantly increased in the presence of the cytokine cocktail together with the number of CD68+ cells on the hydrogel surface. Our study demonstrates that the delivery of a polarisation cocktail with biocompatible hydrogels can control the initial response by the incoming immune cells. This effect can be improved by the encapsulation of autologous monocytes that are also polarised by the cytokine cocktail and secrete additional anti-inflammatory cytokines. This interface can fine tune the initial immune response to an implanted biomaterial in a personalised manner.

6.
J Biomater Appl ; 33(5): 681-692, 2018 11.
Article En | MEDLINE | ID: mdl-30354912

Injectable hydrogels that aim to mechanically stabilise the weakened left ventricle wall to restore cardiac function or to deliver stem cells in cardiac regenerative therapy have shown promising data. However, the clinical translation of hydrogel-based therapies has been limited due to difficulties injecting them through catheters. We have engineered a novel catheter, Advanced Materials Catheter (AMCath), that overcomes translational hurdles associated with delivering fast-gelling covalently cross-linked hyaluronic acid hydrogels to the myocardium. We developed an experimental technique to measure the force required to inject such hydrogels and determined the mechanical/viscoelastic properties of the resulting hydrogels. The preliminary in vivo feasibility of delivering fast-gelling hydrogels through AMCath was demonstrated by accessing the porcine left ventricle and showing that the hydrogel was retained in the myocardium post-injection (three 200 µL injections delivered, 192, 204 and 183 µL measured). However, the mechanical properties of the hydrogels were reduced by passage through AMCath (≤20.62% reduction). We have also shown AMCath can be used to deliver cardiopoietic adipose-derived stem cell-loaded hydrogels without compromising the viability (80% viability) of the cells in vitro. Therefore, we show that hydrogel/catheter compatibility issues can be overcome as we have demonstrated the minimally invasive delivery of a fast-gelling covalently cross-linked hydrogel to the beating myocardium.


Biocompatible Materials/administration & dosage , Cardiac Catheters , Drug Delivery Systems/instrumentation , Hyaluronic Acid/administration & dosage , Hydrogels/administration & dosage , Animals , Cell Line , Cells, Immobilized/cytology , Cells, Immobilized/transplantation , Cross-Linking Reagents/administration & dosage , Equipment Design , Humans , Injections , Myocardial Infarction/therapy , Stem Cell Transplantation , Stem Cells/cytology , Swine
7.
RSC Adv ; 8(14): 7606-7614, 2018 Feb 14.
Article En | MEDLINE | ID: mdl-35539143

Macrophages play a critical role in the initial response to foreign materials in the body. As most biomaterial-based implantable devices would be treated as a foreign body by the immune system, there is a need for systems that can establish a favourable interaction between the implanted biomaterial and the host. Herein, we describe such a system that can be used as an ECM-like microenvironment for macrophage polarization. The hydrogel system was designed to provide a co-crosslinkable microenvironment containing both protein and glycosaminoglycan components, a hydroxyphenyl derivative of gelatine (GTN-HPA) and tyraminated hyaluronic acid (HA-TA). Both polymers can undergo a crosslinking reaction between polymer chains via the same polymerisation initiation system where the polymer network is formed by crosslinks between phenols in GTN-HPA and HA-TA. The mechanical properties and swelling of the hydrogel can be easily controlled as a function of the crosslinking mode and by the ratio of GTN-HPA and HA-TA compounds used. THP-1 monocytes were successfully encapsulated in the gels and cultured for up to 28 days. Cells exhibited higher metabolic activity when encapsulated in softer hydrogels (E ≈ 10 kPa) compared to stiffer (E ≈ 20 kPa) material in which monocytes tended to form large clusters. Encapsulation of monocytes in the material with HA-TA content enhanced the expression of macrophage-related genes. We demonstrated a co-crosslinkable GTN-HPA and HA-TA matrix microenvironment that is suitable for in vitro micro tissue model applications.

8.
J Biomed Mater Res A ; 106(4): 1129-1140, 2018 04.
Article En | MEDLINE | ID: mdl-29266693

Hydrogel scaffolds which bridge the lesion, together with stem cell therapy represent a promising approach for spinal cord injury (SCI) repair. In this study, a hydroxyphenyl derivative of hyaluronic acid (HA-PH) was modified with the integrin-binding peptide arginine-glycine-aspartic acid (RGD), and enzymatically crosslinked to obtain a soft injectable hydrogel. Moreover, addition of fibrinogen was used to enhance proliferation of human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) on HA-PH-RGD hydrogel. The neuroregenerative potential of HA-PH-RGD hydrogel was evaluated in vivo in acute and subacute models of SCI. Both HA-PH-RGD hydrogel injection and implantation into the acute spinal cord hemisection cavity resulted in the same axonal and blood vessel density in the lesion area after 2 and 8 weeks. HA-PH-RGD hydrogel alone or combined with fibrinogen (HA-PH-RGD/F) and seeded with hWJ-MSCs was then injected into subacute SCI and evaluated after 8 weeks using behavioural, histological and gene expression analysis. A subacute injection of both HA-PH-RGD and HA-PH-RGD/F hydrogels similarly promoted axonal ingrowth into the lesion and this effect was further enhanced when the HA-PH-RGD/F was combined with hWJ-MSCs. On the other hand, no effect was found on locomotor recovery or the blood vessel ingrowth and density of glial scar around the lesion. In conclusion, we have developed and characterized injectable HA-PH-RGD based hydrogel, which represents a suitable material for further combinatorial therapies in neural tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1129-1140, 2018.


Hyaluronic Acid/chemistry , Hydrogels/chemistry , Injections , Oligopeptides/chemistry , Spinal Cord Injuries/pathology , Spinal Cord Regeneration , Tissue Scaffolds/chemistry , Animals , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Motor Activity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Spinal Cord Injuries/physiopathology , Wharton Jelly/cytology
9.
Arch Virol ; 158(3): 549-58, 2013 Mar.
Article En | MEDLINE | ID: mdl-23124843

Small, non-enveloped RNA viruses belonging to the genera Sapovirus, Kobuvirus, and Mamastrovirus are usually associated with gastroenteritis in humans and animals. These enteric pathogens are considered potential zoonotic agents. In this study, the prevalence and genetic diversity of sapoviruses (SaVs), kobuviruses (KoVs), and astroviruses (AstVs) in asymptomatic pigs were investigated using a PCR approach. KoV was found to be the most prevalent virus (87.3 %), followed by AstV (34.2 %) and SaV (10.2 %). Interestingly, the intra- and inter-cluster distances between porcine SaV capsid sequences revealed one strain (P38/11/CZ) that formed a new genotype within genogroup III of porcine SaVs, and it is tentatively called "P38/11-like" genotype. Moreover, this is the first report of porcine kobuvirus detection on Czech pig farms. The high prevalence rate of gastroenteritis-producing viruses in clinically healthy pigs represents a continuous source of infection of pigs, and possibly to humans.


Astroviridae/genetics , Gastroenteritis/veterinary , Genetic Variation , Kobuvirus/genetics , Sapovirus/genetics , Swine Diseases/virology , Animals , Astroviridae Infections/epidemiology , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Caliciviridae Infections/virology , Czech Republic/epidemiology , Gastroenteritis/epidemiology , Gastroenteritis/virology , Genotype , Phylogeny , Picornaviridae Infections/epidemiology , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , RNA, Viral/genetics , Sapovirus/classification , Sequence Analysis, RNA , Sus scrofa , Swine , Swine Diseases/epidemiology
...