Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 5977, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645816

RESUMEN

Muscle diseases and aging are associated with impaired myogenic stem cell self-renewal and fewer proliferating progenitors (MPs). Importantly, distinct metabolic states induced by glycolysis or oxidative phosphorylation have been connected to MP proliferation and differentiation. However, how these energy-provisioning mechanisms cooperate remain obscure. Herein, we describe a mechanism by which mitochondrial-localized transcriptional co-repressor p107 regulates MP proliferation. We show p107 directly interacts with the mitochondrial DNA, repressing mitochondrial-encoded gene transcription. This reduces ATP production by limiting electron transport chain complex formation. ATP output, controlled by the mitochondrial function of p107, is directly associated with the cell cycle rate. Sirt1 activity, dependent on the cytoplasmic glycolysis product NAD+, directly interacts with p107, impeding its mitochondrial localization. The metabolic control of MP proliferation, driven by p107 mitochondrial function, establishes a cell cycle paradigm that might extend to other dividing cell types.


Asunto(s)
Lactato Deshidrogenasa 5/genética , Mitocondrias/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Proteína p107 Similar a la del Retinoblastoma/genética , Células Madre/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Ciclo Celular/genética , Línea Celular , Proliferación Celular , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica , Glucólisis , Humanos , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Esquelético/citología , Mioblastos/citología , Fosforilación Oxidativa , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Células Madre/citología , Transcripción Genética
2.
Front Cell Dev Biol ; 8: 480, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612995

RESUMEN

Mitochondria are crucial organelles that control cellular metabolism through an integrated mechanism of energy generation via oxidative phosphorylation. Apart from this canonical role, it is also integral for ROS production, fatty acid metabolism and epigenetic remodeling. Recently, a role for the mitochondria in effecting stem cell fate decisions has gained considerable interest. This is important for skeletal muscle, which exhibits a remarkable property for regeneration following injury, owing to satellite cells (SCs), the adult myogenic stem cells. Mitochondrial function is associated with maintaining and dictating SC fates, linked to metabolic programming during quiescence, activation, self-renewal, proliferation and differentiation. Notably, mitochondrial adaptation might take place to alter SC fates and function in the presence of different environmental cues. This review dissects the contribution of mitochondria to SC operational outcomes, focusing on how their content, function, dynamics and adaptability work to influence SC fate decisions.

3.
Front Cell Dev Biol ; 8: 332, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32478073

RESUMEN

Adipose tissue in physiological and in metabolically altered conditions (obesity, diabetes, metabolic syndrome) strictly interacts with the developing tumors both systemically and locally. In addition to the cancer-associated fibroblasts, adipose cells have also recently been described among the pivotal actors of the tumor microenvironment responsible for sustaining tumor development and progression. In particular, emerging evidence suggests that not only the mature adipocytes but also the adipose stem cells (ASCs) are able to establish a strict crosstalk with the tumour cells, thus resulting in a reciprocal reprogramming of both the tumor and adipose components. This review will focus on the metabolic changes induced by this interaction as a driver of fate determination occurring in cancer-associated ASCs (CA-ASCs) to support the tumor metabolic requirements. We will showcase the major role played by the metabolic changes occurring in the adipose tumor microenvironment that regulates ASC fate and consequently cancer progression. Our new results will also highlight the CA-ASC response in vitro by using a coculture system of primary ASCs grown with cancer cells originating from two different types of adrenal cancers [adrenocortical carcinoma (ACC) and pheochromocytoma]. In conclusion, the different factors involved in this crosstalk process will be analyzed and their effects on the adipocyte differentiation potential and functions of CA-ASCs will be discussed.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31849832

RESUMEN

The last few decades have witnessed an outstanding advancement in our understanding of the hallmarks of endocrine cancers. This includes the epithelial to mesenchymal transition (EMT), a process that alters the morphology and functional characteristics of carcinoma cells. The mesenchymal stem cell like phenotype produced by EMT allows the dislocation of cancer cells from the primary tumor site with inheritance of motility, metastatic and invasive properties. A fundamental driver thought to initiate and propagate EMT is metabolic reprogramming that occur during these transitions. Though there remains a paucity of data regarding the alterations that occur during EMT in endocrine cancers, the contribution of deregulated metabolism is a prominent feature. This mini review focuses on metabolic reprogramming events that occur in cancer cells and in particular those of endocrine origin. It highlights the main metabolic reprogramming outcomes of EMT, encompassing glycolysis, mitochondria oxidative phosphorylation and function, glutamine and lipid metabolism. Comprehending the metabolic changes that occur during EMT will help formulate potential bioenergetic targets as therapies for endocrine cancer metastasis.

5.
Physiol Rep ; 5(5)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28270591

RESUMEN

Increased mitochondrial content is a hallmark of exercise-induced skeletal muscle remodeling. For this process, considerable evidence underscores the involvement of transcriptional coactivators in mediating mitochondrial biogenesis. However, our knowledge regarding the role of transcriptional corepressors is lacking. In this study, we assessed the association of the transcriptional corepressor Rb family proteins, Rb and p107, with endurance exercise-induced mitochondrial adaptation in human skeletal muscle. We showed that p107, but not Rb, protein levels decrease by 3 weeks of high-intensity interval training. This is associated with significant inverse association between p107 and exercise-induced improved mitochondrial oxidative phosphorylation. Indeed, p107 showed significant reciprocal correlations with the protein contents of representative markers of mitochondrial electron transport chain complexes. These findings in human skeletal muscle suggest that attenuated transcriptional repression through p107 may be a novel mechanism by which exercise stimulates mitochondrial biogenesis following exercise.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Biogénesis de Organelos , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Adulto , Humanos , Masculino , Fosforilación Oxidativa , Resistencia Física/fisiología , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Proteína p107 Similar a la del Retinoblastoma/genética , Adulto Joven
6.
Stem Cells ; 35(5): 1378-1391, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28233396

RESUMEN

We show that the transcriptional corepressor p107 orchestrates a metabolic checkpoint that determines adipocyte lineage fates for non-committed progenitors. p107 accomplishes this when stem cell commitment would normally occur in growth arrested cells. p107-deficient embryonic progenitors are characterized by a metabolic state resembling aerobic glycolysis that is necessary for their pro-thermogenic fate. Indeed, during growth arrest they have a reduced capacity for NADH partitioning between the cytoplasm and mitochondria. Intriguingly, this occurred despite an increase in the capacity for mitochondrial oxidation of non-glucose substrates. The significance of metabolic reprogramming is underscored by the disruption of glycolytic capacities in p107-depleted progenitors that reverted their fates from pro-thermogenic to white adipocytes. Moreover, the manipulation of glycolytic capacity on nonspecified embryonic and adult progenitors forced their beige fat commitment. These innovative findings introduce a new approach to increase pro-thermogenic adipocytes based on simply promoting aerobic glycolysis to manipulate nonspecified progenitor fate decisions. Stem Cells 2017;35:1378-1391.


Asunto(s)
Adipocitos Marrones/citología , Adipocitos Blancos/citología , Puntos de Control del Ciclo Celular , Linaje de la Célula , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Aerobiosis , Animales , Línea Celular , Núcleo Celular/metabolismo , Embrión de Mamíferos/citología , Técnicas de Silenciamiento del Gen , Glucólisis , Ratones Noqueados , Modelos Biológicos , Oxidación-Reducción , Células Madre/citología , Células Madre/metabolismo , Fracciones Subcelulares/metabolismo
7.
Bone ; 71: 164-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25445454

RESUMEN

Skeletal muscle has strong regenerative capabilities. However, failed regeneration can lead to complications where aberrant tissue forms as is the case with heterotopic ossification (HO), in which chondrocytes, osteoblasts and white and brown adipocytes can arise following severe trauma. In humans, the various HO cell types likely originate from multipotent mesenchymal stromal cells (MSCs) in skeletal muscle, which have not been identified in humans until now. In the present study, adherent cells from freshly digested skeletal muscle tissue were expanded in defined culture medium and were FACS-enriched for the CD73(+)CD105(+)CD90(-) population, which displayed robust multilineage potential. Clonal differentiation assays confirmed that all three lineages originated from a single multipotent progenitor. In addition to differentiating into typical HO lineages, human muscle resident MSCs (hmrMSCs) also differentiated into brown adipocytes expressing uncoupling protein 1 (UCP1). Characterizing this novel multipotent hmrMSC population with a brown adipocyte differentiation capacity has enhanced our understanding of the contribution of non-myogenic progenitor cells to regeneration and aberrant tissue formation in human skeletal muscle.


Asunto(s)
Músculo Esquelético/patología , Osificación Heterotópica/patología , Células Madre/patología , Adipocitos Marrones/citología , Adipocitos Marrones/metabolismo , Adulto , Antígenos CD/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Clonales , Femenino , Citometría de Flujo , Humanos , Canales Iónicos/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 1
8.
Stem Cells ; 32(5): 1323-36, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24449206

RESUMEN

Thermogenic (beige and brown) adipocytes protect animals against obesity and metabolic disease. However, little is known about the mechanisms that commit stem cells toward different adipocyte lineages. We show here that p107 is a master regulator of adipocyte lineage fates, its suppression required for commitment of stem cells to the brown-type fate. p107 is strictly expressed in the stem cell compartment of white adipose tissue depots and completely absent in brown adipose tissue. Remarkably, p107-deficient stem cells uniformly give rise to brown-type adipocytes in vitro and in vivo. Furthermore, brown fat programming of mesenchymal stem cells by PRDM-BF1-RIZ1 homologous domain containing 16 (Prdm16) was associated with a dramatic reduction of p107 levels. Indeed, Prdm16 directly suppressed p107 transcription via promoter binding. Notably, the sustained expression of p107 blocked the ability of Prdm16 to induce brown fat genes. These findings demonstrate that p107 expression in stem cells commits cells to the white versus brown adipose lineage.


Asunto(s)
Adipocitos/metabolismo , Linaje de la Célula/genética , Proteína p107 Similar a la del Retinoblastoma/genética , Células Madre/metabolismo , Adipocitos/citología , Adipocitos Marrones/citología , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Western Blotting , Diferenciación Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Noqueados , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
J Cell Biol ; 190(4): 651-62, 2010 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-20713602

RESUMEN

Mice lacking p107 exhibit a white adipose deficiency yet do not manifest the metabolic changes typical for lipodystrophy, and instead exhibit low levels of serum triglycerides and a normal liver phenotype. When fed a high fat diet, p107-null mice still did not accumulate fat in the liver, and display markedly elevated energy expenditures together with an increased energy preference for lipids. Skeletal muscle was therefore examined, as this is normally the major tissue involved in whole body lipid metabolism. Notably, p107-deficient muscle express increased levels of peroxisome proliferator-activated receptor gamma co-activator-1alpha (PGC-1alpha) and contained increased numbers of the pro-oxidative type I and type IIa myofibers. Chromatin immunoprecipitation revealed binding of p107 and E2F4 to the PGC-1alpha proximal promoter, and this binding repressed promoter activity in transient transcription assays. Ectopic expression of p107 in muscle tissue in vivo results in a pronounced 20% decrease in the numbers of oxidative type IIa myofibers. Lastly, isolated p107-deficient muscle tissue display a threefold increase in lipid metabolism. Therefore, p107 determines the oxidative state of multiple tissues involved in whole body fat metabolism, including skeletal muscle.


Asunto(s)
Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Oxidación-Reducción , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Transactivadores/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/fisiopatología , Animales , Calorimetría , Dieta , Grasas de la Dieta/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteína p107 Similar a la del Retinoblastoma/genética , Transactivadores/genética , Factores de Transcripción , Transcripción Genética
11.
Mech Ageing Dev ; 131(1): 9-20, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19913570

RESUMEN

Skeletal muscle ageing is characterized by faulty degenerative/regenerative processes that promote the decline of its mass, strength, and endurance. In this study, we used a transcriptional profiling method to better understand the molecular pathways and factors that contribute to these processes. To more appropriately contrast the differences in regenerative capacity of old muscle, we compared it with young muscle, where robust growth and efficient myogenic differentiation is ongoing. Notably, in old mice, we found a severe deficit in satellite cells activation. We performed expression analyses on RNA from the gastrocnemius muscle of young (3-week-old) and old (24-month-old) mice. The differential expression highlighted genes that are involved in the efficient functioning of satellite cells. Indeed, the greatest number of up-regulated genes in young mice encoded components of the extracellular matrix required for the maintenance of the satellite cell niche. Moreover, other genes included Wnt inhibitors (Wif1 and Sfrp2) and Notch activator (Dner), which are putatively involved in the interconnected signalling networks that control satellite cell function. The widespread expression differences for inhibitors of TGFbeta signalling further emphasize the shortcomings in satellite cell performance. Therefore, we draw attention to the breakdown of features required to maintain satellite cell integrity during the ageing process.


Asunto(s)
Envejecimiento/genética , Senescencia Celular/genética , Perfilación de la Expresión Génica/métodos , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Satélite del Músculo Esquelético/metabolismo , Factores de Edad , Animales , Células Cultivadas , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Transducción de Señal/genética
12.
J Cell Biol ; 187(7): 991-1005, 2009 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-20026657

RESUMEN

The mitogen-activated protein kinase p38-gamma is highly expressed in skeletal muscle and is associated with the dystrophin glycoprotein complex; however, its function remains unclear. After induced damage, muscle in mice lacking p38-gamma generated significantly fewer myofibers than wild-type muscle. Notably, p38-gamma-deficient muscle contained 50% fewer satellite cells that exhibited premature Myogenin expression and markedly reduced proliferation. We determined that p38-gamma directly phosphorylated MyoD on Ser199 and Ser200, which results in enhanced occupancy of MyoD on the promoter of myogenin together with markedly decreased transcriptional activity. This repression is associated with extensive methylation of histone H3K9 together with recruitment of the KMT1A methyltransferase to the myogenin promoter. Notably, a MyoD S199A/S200A mutant exhibits markedly reduced binding to KMT1A. Therefore, p38-gamma signaling directly induces the assembly of a repressive MyoD transcriptional complex. Together, these results establish a hitherto unappreciated and essential role for p38-gamma signaling in positively regulating the expansion of transient amplifying myogenic precursor cells during muscle growth and regeneration.


Asunto(s)
Diferenciación Celular/genética , Silenciador del Gen , Proteína Quinasa 12 Activada por Mitógenos/fisiología , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Animales , Línea Celular , Proliferación Celular , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Proteína MioD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Regeneración , Transducción de Señal , Transcripción Genética
13.
Cell Stem Cell ; 4(6): 535-47, 2009 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-19497282

RESUMEN

Satellite cells in skeletal muscle are a heterogeneous population of stem cells and committed progenitors. We found that quiescent satellite stem cells expressed the Wnt receptor Fzd7 and that its candidate ligand Wnt7a was upregulated during regeneration. Wnt7a markedly stimulated the symmetric expansion of satellite stem cells but did not affect the growth or differentiation of myoblasts. Silencing of Fzd7 abrogated Wnt7a binding and stimulation of stem cell expansion. Wnt7a signaling induced the polarized distribution of the planar cell polarity effector Vangl2. Silencing of Vangl2 inhibited Wnt7a action on satellite stem cell expansion. Wnt7a overexpression enhanced muscle regeneration and increased both satellite cell numbers and the proportion of satellite stem cells. Muscle lacking Wnt7a exhibited a marked decrease in satellite cell number following regeneration. Therefore, Wnt7a signaling through the planar cell polarity pathway controls the homeostatic level of satellite stem cells and hence regulates the regenerative potential of muscle.


Asunto(s)
Polaridad Celular , Proliferación Celular , Células Satélite del Músculo Esquelético/citología , Proteínas Wnt/fisiología , Animales , Recuento de Células , Receptores Frizzled , Homeostasis , Ratones , Músculo Esquelético/fisiología , Proteínas del Tejido Nervioso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regeneración
14.
Front Biosci (Landmark Ed) ; 14(8): 3012-23, 2009 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-19273253

RESUMEN

Curative treatments are currently not available for people suffering from one of the many prevalent muscle myopathies. One approach to ameliorate these conditions relies on the cell-based transplantation of potential myogenic precursors, or more optimistically, the transfer of engineered skeletal muscle tissue. To date, clinical trials with myogenic stem cell transplantation have met with only modest success while the transplantation of engineered muscle tissue is at the earliest stages of development. Despite the slow progress, these studies have provided insights and avenues that will eventually lead to a powerful therapeutic tool.


Asunto(s)
Trasplante de Células , Músculo Esquelético/citología , Ingeniería de Tejidos , Animales , Ratones , Enfermedades Musculares/terapia
15.
Nature ; 454(7207): 961-7, 2008 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-18719582

RESUMEN

Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.


Asunto(s)
Adipocitos Marrones/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Adipocitos Marrones/citología , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/citología , Animales , Células COS , Diferenciación Celular/genética , Línea Celular , Chlorocebus aethiops , Proteínas de Unión al ADN/genética , Masculino , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Factor 5 Regulador Miogénico/genética , PPAR gamma/genética , Factores de Transcripción/genética
16.
Mol Diagn Ther ; 12(2): 99-108, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18422374

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal heritable childhood myodegenerative condition caused by a mutation within the gene encoding the dystrophin protein within the X chromosome. While, historically, patients with this condition rarely lived into their thirties, they are now living substantially longer as a result of new treatments based on multi-disciplinary care. Despite these advances, the prognosis for DMD patients is limited, and a progressive reduction in quality of life and early death in adulthood cannot be prevented using currently available treatment regimens. The best hopes for a cure lies with cellular and gene therapy approaches that target the underlying genetic defect. In the past several years, viral and nonviral gene therapy methodologies based on adeno-associated viruses, naked plasmid delivery, antisense oligonucleotides, and oligonucleotide-mediated gene editing have advanced to a high degree of sophistication, to the extent that research has moved from the laboratory setting to the clinic. Notwithstanding these accomplishments, shortcomings with each therapy remain, so more work is required to devise an appropriate therapeutic strategy for the management and eventual cure of this debilitating disease.


Asunto(s)
Terapia Genética/tendencias , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animales , Marcación de Gen/métodos , Marcación de Gen/tendencias , Genoma Humano , Humanos , Edición de ARN/fisiología , Vacunas de ADN/uso terapéutico
17.
J Cell Physiol ; 214(3): 568-81, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17894419

RESUMEN

The E2F family of transcription factors regulate the expression of many growth-related genes in a cell cycle-dependent manner. These transcription factors can activate or, in conjunction with an Rb-related protein, repress transcription. E2F transcriptional activity is regulated at several different levels that are each linked to cell cycle progression. In many cell types, E2F4 and E2F5 are the predominant E2F species during G(0) and early G(1) and function primarily as repressors of E2F-regulated genes. In this study, co-immunoprecipitation techniques were used to demonstrate that cyclins D1, D2, and D3 are capable of interacting with E2F4, E2F5, and DP1. Overexpression of cyclin D1/cdk4 reduced E2F4-mediated transcription in a simple reporter gene assay and electrophoretic mobility shift analyses using nuclear extracts from transfected cells indicated that cyclin D1/cdk4 disrupts the DNA-binding ability of E2F4. Cell cycle analysis following stimulation of serum-starved 3T3 cells indicated that E2F4 undergoes changes in its phosphorylation pattern coincident with the synthesis of cyclin D1. Examination of a series of E2F4 deletion mutants indicated that a cyclin D1-binding site located close to the carboxyl terminus of E2F4 was critical for the disruption of DNA binding by cyclin D1/cdk4. These data support a model in which E2F4 DNA binding is abolished during mid-G(1) at the same time when E2F interactions with pRb-related proteins are disrupted by cyclin D1/cdk4.


Asunto(s)
Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , ADN/metabolismo , Factor de Transcripción E2F4/metabolismo , Factor de Transcripción DP1/metabolismo , Células 3T3-L1 , Animales , Línea Celular , ADN/antagonistas & inhibidores , Factor de Transcripción E2F4/antagonistas & inhibidores , Factor de Transcripción E2F5/metabolismo , Humanos , Insectos , Ratones , Fosforilación , Unión Proteica , Factor de Transcripción DP1/antagonistas & inhibidores , Activación Transcripcional
18.
Stem Cells ; 25(12): 3101-10, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17823241

RESUMEN

A novel population of tissue-resident endothelial precursors (TEPs) was isolated from small blood vessels in dermal, adipose, and skeletal muscle of mouse based on their ability to be grown as spheres. Cellular and molecular analyses of these cells revealed that they were highly related regardless of the tissue of origin and distinct from embryonic neural stem cells. Notably, TEPs did not express hematopoietic markers, but they expressed numerous characteristics of angiogenic precursors and their differentiated progeny, such as CD34, Flk-1, Tie-1, CD31, and vascular endothelial cadherin (VE-cadherin). TEPs readily differentiated into endothelial cells in newly formed vascular networks following transplantation into regenerating skeletal muscle. Taken together, these experiments suggest that TEPs represent a novel class of endothelial precursors that are closely associated with small blood vessels in muscle, adipose, and dermal tissue. This finding is of particular interest since it could bring new insight in cancer angiogenesis and collateral blood vessels developed following ischemia. Disclosure of potential conflicts of interest is found at the end of this article.


Asunto(s)
Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/crecimiento & desarrollo , Dermis/crecimiento & desarrollo , Endotelio/irrigación sanguínea , Endotelio/crecimiento & desarrollo , Músculos/fisiología , Neovascularización Fisiológica/fisiología , Células Madre/fisiología , Tejido Adiposo/citología , Animales , Animales Recién Nacidos , Diferenciación Celular/fisiología , Células Cultivadas , Dermis/citología , Endotelio/citología , Ratones , Ratones Endogámicos BALB C , Morfogénesis/fisiología , Músculos/citología , Esferoides Celulares/citología , Esferoides Celulares/fisiología , Células Madre/citología
19.
J Cell Physiol ; 212(1): 13-25, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17443675

RESUMEN

A monoclonal antibody raised against adenovirus E1A-associated cellular proteins recognized Nek9, a NimA-related protein kinase. Subcellular fractionation and immunofluorescence indicated that Nek9 was primarily cytoplasmic with a small portion located in the nucleus whereas E1A was primarily nuclear. Although co-immunoprecipitation experiments indicated that nuclear Nek9 interacted, directly or indirectly, with E1A, the major effect of E1A was to diminish the amount of Nek9 in the nucleus suggesting that E1A alters the subcellular distribution of Nek9 and that the interaction is transient. A Nek9 deletion mutant lacking a central RCC1-like domain interacted stably with E1A and accumulated in the nucleus in the presence of E1A, possibly representing an intermediate stage of the normally transient Nek9/E1A interaction. The interaction of Nek9 with E1A was dependent on the N-terminal sequences of E1A. Attempts to stably overexpress either Nek9 or the kinase-inactive mutant in various cell lines were unsuccessful; however, the presence of E1A allowed stable overexpression of both proteins. These results suggest that E1A disrupts a nuclear function of Nek9.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Ratones , Quinasas Relacionadas con NIMA , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Interferente Pequeño
20.
Curr Opin Clin Nutr Metab Care ; 9(3): 214-9, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16607119

RESUMEN

PURPOSE OF REVIEW: Satellite cells are required for muscle regeneration to occur properly. An understanding of the mechanisms that increase their number is important for potential therapeutic use in a variety of muscle disorders. RECENT FINDINGS: This article reviews the state of knowledge regarding mechanisms and factors involved in regulating the satellite cell population. An overview of the soluble factors intrinsic to the regulation of the activation, proliferation and differentiation of satellite cells is presented. We also highlight our current knowledge of satellite cell specification that provides a potential basis for increasing satellite cell numbers by manipulating different cell types. Finally, summarizing our current knowledge of satellite cell self-renewal offers insight for possible avenues to increase the supply of satellite cells. SUMMARY: Multiple approaches for increasing the number and activity of satellite cells will lead to treatments for muscular diseases. For example, in muscular dystrophy the exhaustion of satellite cells is the principal cause of death.


Asunto(s)
Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Enfermedades Musculares/terapia , Regeneración/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Diferenciación Celular , División Celular , Humanos , Células Satélite del Músculo Esquelético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA