Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Molecules ; 29(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611907

RESUMEN

The insecticidal property of ring C-seco limonoids has been discovered empirically and the target protein identified, but, to date, the molecular mechanism of action has not been described at the atomic scale. We elucidate on computational grounds whether nine C-seco limonoids present sufficiently high affinity to bind specifically with the putative target enzyme of the insects (ecdysone 20-monooxygenase). To this end, 3D models of ligands and the receptor target were generated and their interaction energies estimated by docking simulations. As a proof of concept, the tetrahydro-isoquinolinyl propenamide derivative QHC is the reference ligand bound to aldosterone synthase in the complex with PDB entry 4ZGX. It served as the 3D template for target modeling via homology. QHC was successfully docked back to its crystal pose in a one-digit nanomolar range. The reported experimental binding affinities span over the nanomolar to lower micromolar range. All nine limonoids were found with strong affinities in the range of -9 < ΔG < -13 kcal/mol. The molt hormone ecdysone showed a comparable ΔG energy of -12 kcal/mol, whereas -11 kcal/mol was the back docking result for the liganded crystal 4ZGX. In conclusion, the nine C-seco limonoids were strong binders on theoretical grounds in an activity range between a ten-fold lower to a ten-fold higher concentration level than insecticide ecdysone with its known target receptor. The comparable or even stronger binding hints at ecdysone 20-monooxygenase as their target biomolecule. Our assumption, however, is in need of future experimental confirmation before conclusions with certainty can be drawn about the true molecular mechanism of action for the C-seco limonoids under scrutiny.


Asunto(s)
Insecticidas , Limoninas , Oxigenasas , Insecticidas/farmacología , Ecdisona , Limoninas/farmacología , Muda
2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069045

RESUMEN

In this study, molecular dynamics (MD) and docking simulations were carried out on the crystal structure of Neisseria Gonorrhoeae RsmE aiming at free energy of binding estimation (ΔGbinding) of the methyl transfer substrate S-adenosylmethionine (SAM), as well as its homocysteine precursor S-adenosylhomocysteine (SAH). The mechanistic insight gained was generalized in view of existing homology to two other crystal structures of RsmE from Escherichia coli and Aquifex aeolicus. As a proof of concept, the crystal poses of SAM and SAH were reproduced reflecting a more general pattern of molecular interaction for bacterial RsmEs. Our results suggest that a distinct set of conserved residues on loop segments between ß12, α6, and Met169 are interacting with SAM and SAH across these bacterial methyltransferases. Comparing molecular movements over time (MD trajectories) between Neisseria gonorrhoeae RsmE alone or in the presence of SAH revealed a hitherto unknown gatekeeper mechanism by two isoleucine residues, Ile171 and Ile219. The proposed gating allows switching from an open to a closed state, mimicking a double latch lock. Additionally, two key residues, Arg221 and Thr222, were identified to assist the exit mechanism of SAH, which could not be observed in the crystal structures. To the best of our knowledge, this study describes for the first time a general catalytic mechanism of bacterial RsmE on theoretical ground.


Asunto(s)
Proteínas de Escherichia coli , Metiltransferasas , Metiltransferasas/metabolismo , ARN Ribosómico 16S/genética , Simulación de Dinámica Molecular , Metilación , Escherichia coli/genética , Escherichia coli/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Escherichia coli/metabolismo
3.
Viruses ; 15(5)2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37243142

RESUMEN

In this study, we describe the input data and processing steps to find antiviral lead compounds by a virtual screen. Two-dimensional and three-dimensional filters were designed based on the X-ray crystallographic structures of viral neuraminidase co-crystallized with substrate sialic acid, substrate-like DANA, and four inhibitors (oseltamivir, zanamivir, laninamivir, and peramivir). As a result, ligand-receptor interactions were modeled, and those necessary for binding were utilized as screen filters. Prospective virtual screening (VS) was carried out in a virtual chemical library of over half a million small organic substances. Orderly filtered moieties were investigated based on 2D- and 3D-predicted binding fingerprints disregarding the "rule-of-five" for drug likeness, and followed by docking and ADMET profiling. Two-dimensional and three-dimensional screening were supervised after enriching the dataset with known reference drugs and decoys. All 2D, 3D, and 4D procedures were calibrated before execution, and were then validated. Presently, two top-ranked substances underwent successful patent filing. In addition, the study demonstrates how to work around reported VS pitfalls in detail.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Inhibidores Enzimáticos/farmacología , Estudios Prospectivos , Zanamivir/farmacología , Antivirales/uso terapéutico , Virus de la Influenza A/metabolismo , Neuraminidasa/metabolismo , Gripe Humana/tratamiento farmacológico , Gripe Humana/prevención & control
4.
Molecules ; 27(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35566327

RESUMEN

Despite the recent promising results of MDMA (3,4-methylenedioxy-methamphetamine) as a psychotherapeutic agent and its history of misuse, little is known about its molecular mode of action. MDMA enhances monoaminergic neurotransmission in the brain and its valuable psychoactive effects are associated to a dual action on the 5-HT transporter (SERT). This drug inhibits the reuptake of 5-HT (serotonin) and reverses its flow, acting as a substrate for the SERT, which possesses a central binding site (S1) for antidepressants as well as an allosteric (S2) one. Previously, we characterized the spatial binding requirements for MDMA at S1. Here, we propose a structure-based mechanistic model of MDMA occupation and translocation across both binding sites, applying ensemble binding space analyses, electrostatic complementarity, and Monte Carlo energy perturbation theory. Computed results were correlated with experimental data (r = 0.93 and 0.86 for S1 and S2, respectively). Simulations on all hSERT available structures with Gibbs free energy estimations (ΔG) revealed a favourable and pervasive dual binding mode for MDMA at S2, i.e., adopting either a 5-HT or an escitalopram-like orientation. Intermediate ligand conformations were identified within the allosteric site and between the two sites, outlining an internalization pathway for MDMA. Among the strongest and more frequent interactions were salt bridges with Glu494 and Asp328, a H-bond with Thr497, a π-π with Phe556, and a cation-π with Arg104. Similitudes and differences with the allosteric binding of 5-HT and antidepressants suggest that MDMA may have a distinctive chemotype. Thus, our models may provide a framework for future virtual screening studies and pharmaceutical design and to develop hSERT allosteric compounds with a unique psychoactive MDMA-like profile.


Asunto(s)
N-Metil-3,4-metilenodioxianfetamina , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Antidepresivos/química , Citalopram/química , Humanos , Método de Montecarlo , N-Metil-3,4-metilenodioxianfetamina/farmacología , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Inhibidores Selectivos de la Recaptación de Serotonina/química
5.
ACS Chem Neurosci ; 13(2): 229-244, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34990110

RESUMEN

The activation of N-methyl-d-aspartate receptor (NMDAR) is triggered by the closure of bilobed (D1 and D2) clamshell-like clefts upon binding glycine (Gly) and glutamate. There is evidence that cholinergic compounds modulate NMDAR-mediated currents via direct receptor-ligand interactions; however, molecular bases are unknown. Here, we first propose a mechanistic structure-based explanation for the observed ACh-induced submaximal potentiation of NMDA-elicited currents in striatal neurons by predicting competitive inhibition with Gly. Then, the model was validated, in principle, by confirming that the coapplication of Gly and ACh significantly reduces these neuronal currents. Finally, we delineate the interplay of ACh with the NMDAR by a combination of computational strategies. Crystallographic ACh-bound complexes were studied, revealing a similar ACh binding environment on the GluN1 subunit of the NMDAR. We illustrate how ACh can occupy X-ray monomeric open, dimeric "semiopen" cleft conformations obtained by molecular dynamics and a full-active cryo-EM NMDAR structure, explaining the suboptimal NMDAR electrophysiological activity under the "Venus Flytrap model". At an evolutionary biology level, the binding mode of ACh coincides with that of the homologous ornithine-bound periplasmic LAO binding protein complex. Our computed results indicate an analogous mechanism of action, inasmuch as ACh may stabilize the GluN1 subunit "semiclosed" conformations by inducing direct and indirect D1-to-D2 interdomain bonds. Additionally, an alternative binding site was detected, shared by the known NMDAR allosteric modulators. Experimental and computed results strongly suggest that ACh acts as a Gly-competitive, submaximal potentiating agent of the NMDAR, possibly constituting a novel chemotype for multitarget-directed drug development, e.g., to treat Alzheimer's, and it may lead to a new understanding of glutamatergic neurotransmission.


Asunto(s)
Acetilcolina , Receptores de N-Metil-D-Aspartato , Glicina/farmacología , N-Metilaspartato , Neuronas
6.
Heliyon ; 7(8): e07784, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34458620

RESUMEN

The popular recreational drug MDMA (3,4-methylenedioxy-methamphetamine) has a documented potential as a psychopharmacological clinical and research tool. This is due to its unique ability to promote reprocessing of traumatic memories, empathetic and pro-social states. Although it is established that MDMA exerts its behavioural effects via the serotonin transporter (SERT), the ligand-protein molecular interplay remains elusive. In order to shed light on the binding of MDMA and its primary congeneric entactogens (MDA, MBDB and MDAI), we first combined induced fit with Monte Carlo simulations. The computed interaction energies of the models correlated well with experimental activities (adjR2 = 0.78). Then we carried out 'ensemble binding space docking' on trajectories generated by interpolation of experimentally derived structures of the hSERT from the outward-open, and the occluded, to the inward-open states. This approach revealed low-energy alternative binding modes, suggesting high occupancy of the central site, yet considerable MDMA mobility within it, favouring the paroxetine-like orientation. Finally, we designed a pharmacophore that may be used to recognise hSERT-mediated serotonin releasers and uptake inhibitors of diverse chemical structure, identifying their active conformations and interacting residues. We conclude that the conserved amine-Asp98 ionic and edge-to-face π-π interactions are crucial to the mode of action of MDMA on the hSERT, underscoring the contributions of Tyr95 and gating residues Phe341, Tyr176 and Phe335. Amenable to experimental testing, our modelling may aid the rational design of novel entactogenic compounds and contribute to the understanding of an action mechanism, common and typical of psychotropic agents.

7.
Arch Pharm (Weinheim) ; 354(11): e2100160, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34427335

RESUMEN

Boswellic acids (BAs) have been shown to possess antiviral activity. Using bioinformatic methods, it was tested whether or not acetyl-11-keto-ß-boswellic acid (AKBA), 11-keto-ß-boswellic acid (KBA), ß-boswellic acid (BBA), and the phosphorylated active metabolite of Remdesivir® (RGS-P3) bind to functional proteins of SARS-CoV-2, that is, the replicase polyprotein P0DTD1, the spike glycoprotein P0DTC2, and the nucleoprotein P0DTC9. Using P0DTD1, AKBA and KBA showed micromolar binding affinity to the RNA-dependent RNA polymerase (RdRp) and to the main proteinase complex Mpro . Phosphorylated BAs even bond in the nanomolar range. Due to their positive and negative charges, BAs and RGS-P3 bond to corresponding negative and positive areas of the protein. BAs and RGS-P3 docked in the tunnel-like cavity of RdRp. BAs also docked into the elongated surface rim of viral Mpro . In both cases, binding occurred with active site amino acids in the lower micromolecular to upper nanomolar range. KBA, BBA, and RGS-P3 also bond to P0DTC2 and P0DTC9. The binding energies for BAs were in the range of -5.8 to -6.3 kcal/mol. RGS-P3 and BAs occluded the centrally located pore of the donut-like protein structure of P0DTC9 and, in the case of P0DTC2, RGS-P3 and BAs impacted the double-wing-like protein structure. The data of this bioinformatics study clearly show that BAs bind to three functional proteins of the SARS-CoV-2 virus responsible for adhesion and replication, as does RGS-P3, a drug on the market to treat this disease. The binding effectiveness of BAs can be increased through phosphate esterification. Whether or not BAs are druggable against the SARS-CoV-2 disease remains to be established.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Tratamiento Farmacológico de COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/fisiología , Triterpenos/farmacología , Proteínas Virales/fisiología , Adenosina Monofosfato/farmacología , Alanina/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antivirales/farmacología , Sitios de Unión/fisiología , Boswellia , COVID-19/virología , Biología Computacional/métodos , Humanos , Simulación del Acoplamiento Molecular , Nucleoproteínas/metabolismo , Poliproteínas/metabolismo , Profármacos/farmacología , Unión Proteica/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Relación Estructura-Actividad
8.
Molecules ; 26(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208805

RESUMEN

This article presents experimental evidence and computed molecular models of a potential interaction between receptor domain D5 of TrkB with the carboxyl-terminal domain of tetanus neurotoxin (Hc-TeNT). Computational simulations of a novel small cyclic oligopeptide are designed, synthesized, and tested for possible tetanus neurotoxin-D5 interaction. A hot spot of this protein-protein interaction is identified in analogy to the hitherto known crystal structures of the complex between neurotrophin and D5. Hc-TeNT activates the neurotrophin receptors, as well as its downstream signaling pathways, inducing neuroprotection in different stress cellular models. Based on these premises, we propose the Trk receptor family as potential proteic affinity receptors for TeNT. In vitro, Hc-TeNT binds to a synthetic TrkB-derived peptide and acts similar to an agonist ligand for TrkB, resulting in phosphorylation of the receptor. These properties are weakened by the mutagenesis of three residues of the predicted interaction region in Hc-TeNT. It also competes with Brain-derived neurotrophic factor, a native binder to human TrkB, for the binding to neural membranes, and for uptake in TrkB-positive vesicles. In addition, both molecules are located together In Vivo at neuromuscular junctions and in motor neurons.


Asunto(s)
Glicoproteínas de Membrana/química , Metaloendopeptidasas/química , Fármacos Neuroprotectores/química , Oligopéptidos/química , Receptor trkB/química , Toxina Tetánica/química , Animales , Cristalografía por Rayos X , Humanos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/farmacología , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/farmacología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Receptor trkB/farmacología , Toxina Tetánica/metabolismo , Toxina Tetánica/farmacología
9.
Inorganica Chim Acta ; 519: 120287, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33589845

RESUMEN

In silico techniques helped explore the binding capacities of the SARS-CoV-2 main protease (Mpro) for a series of metalloorganic compounds. Along with small size vanadium complexes a vanadium-containing derivative of the peptide-like inhibitor N3 (N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-l-valyl-N1-((1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl] methyl }but-2-enyl)-l-leucinamide) was designed from the crystal structure with PDB entry code 6LU7. On theoretical grounds our consensus docking studies evaluated the binding affinities at the hitherto known binding site of Chymotrypsin-like protease (3CLpro) of SARS-CoV-2 for existing and designed vanadium complexes. This main virus protease (Mpro) has a Cys-His dyad at the catalytic site that is characteristic of metal-dependent or metal-inhibited hydrolases. Mpro was compared to the human protein-tyrosine phosphatase 1B (hPTP1B) with a comparable catalytic dyad. HPTP1B is a key regulator at an early stage in the signalling cascade of the insulin hormone for glucose uptake into cells. The vanadium-ligand binding site of hPTP1B is located in a larger groove on the surface of Mpro. Vanadium constitutes a well-known phosphate analogue. Hence, its study offers possibilities to design promising vanadium-containing binders to SARS-CoV-2. Given the favourable physicochemical properties of vanadium nuclei, such organic vanadium complexes could become drugs not only for pharmacotherapy but also diagnostic tools for early infection detection in patients. This work presents the in silico design of a potential lead vanadium compound. It was tested along with 20 other vanadium-containing complexes from the literature in a virtual screening test by docking to inhibit Mpro of SARS-CoV-2.

10.
Molecules ; 25(18)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32947893

RESUMEN

Neuraminidase (NA) of influenza viruses enables the virus to access the cell membrane. It degrades the sialic acid contained in extracellular mucin. Later, it is responsible for releasing newly formed virions from the membrane of infected cells. Both processes become key functions within the viral cycle. Therefore, it is a therapeutic target for research of the new antiviral agents. Structure-activity relationships studies have revealed which are the important functional groups for the receptor-ligand interaction. Influenza virus type A NA activity was inhibited by five scaffolds without structural resemblance to sialic acid. Intending small organic compound repositioning along with drug repurposing, this study combined in silico simulations of ligand docking into the known binding site of NA, along with in vitro bioassays. The five proposed scaffolds are N-acetylphenylalanylmethionine, propanoic 3-[(2,5-dimethylphenyl) carbamoyl]-2-(piperazin-1-yl) acid, 3-(propylaminosulfonyl)-4-chlorobenzoic acid, ascorbic acid (vitamin C), and 4-(dipropylsulfamoyl) benzoic acid (probenecid). Their half maximal inhibitory concentration (IC50) was determined through fluorometry. An acidic reagent 2'-O-(4-methylumbelliferyl)-α-dN-acetylneuraminic acid (MUNANA) was used as substrate for viruses of human influenza H1N1 or avian influenza H5N2. Inhibition was observed in millimolar ranges in a concentration-dependent manner. The IC50 values of the five proposed scaffolds ranged from 6.4 to 73 mM. The values reflect a significant affinity difference with respect to the reference drug zanamivir (p < 0.001). Two compounds (N-acetyl dipeptide and 4-substituted benzoic acid) clearly showed competitive mechanisms, whereas ascorbic acid reflected non-competitive kinetics. The five small organic molecules constitute five different scaffolds with moderate NA affinities. They are proposed as lead compounds for developing new NA inhibitors which are not analogous to sialic acid.


Asunto(s)
Inhibidores Enzimáticos/química , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H5N2 del Virus de la Influenza A/enzimología , Neuraminidasa/antagonistas & inhibidores , Antivirales/química , Antivirales/metabolismo , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Sitios de Unión , Unión Competitiva , Inhibidores Enzimáticos/metabolismo , Humanos , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Ácido N-Acetilneuramínico/química , Neuraminidasa/metabolismo , Relación Estructura-Actividad , Zanamivir/química , Zanamivir/metabolismo
11.
AMB Express ; 10(1): 153, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32821976

RESUMEN

Periplasmic oligopeptide binding protein (OppA) is part of a multimeric cytoplasmic membrane protein complex, whose function is known as peptide transporters found in Gram-negative bacteria. A chaperone-like activity has been found for the OppA from Yersinia pseudotuberculosis, using biochemical experiments. Through computational analysis, we selected two amino acid residues (R41 and D42) that probably are involved in the chaperone-like activity. Our results to corroborate how OppA assists refolding and renaturation of lactate dehydrogenase and alpha-glucosidase denatured enzymes.

12.
Molecules ; 25(15)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756517

RESUMEN

(1) Background: voltage-gated sodium channels (Navs) are integral membrane proteins that allow the sodium ion flux into the excitable cells and initiate the action potential. They comprise an α (Navα) subunit that forms the channel pore and are coupled to one or more auxiliary ß (Navß) subunits that modulate the gating to a variable extent. (2) Methods: after performing homology in silico modeling for all nine isoforms (Nav1.1α to Nav1.9α), the Navα and Navß protein-protein interaction (PPI) was analyzed chemometrically based on the primary and secondary structures as well as topological or spatial mapping. (3) Results: our findings reveal a unique isoform-specific correspondence between certain segments of the extracellular loops of the Navα subunits. Precisely, loop S5 in domain I forms part of the PPI and assists Navß1 or Navß3 on all nine mammalian isoforms. The implied molecular movements resemble macroscopic springs, all of which explains published voltage sensor effects on sodium channel fast inactivation in gating. (4) Conclusions: currently, the specific functions exerted by the Navß1 or Navß3 subunits on the modulation of Navα gating remain unknown. Our work determined functional interaction in the extracellular domains on theoretical grounds and we propose a schematic model of the gating mechanism of fast channel sodium current inactivation by educated guessing.


Asunto(s)
Aminoácidos/química , Modelos Moleculares , Canales de Sodio Activados por Voltaje/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/química
13.
Curr Comput Aided Drug Des ; 16(3): 327-339, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32507104

RESUMEN

BACKGROUND: The relatedness between the linear equations of thermodynamics and QSAR was studied thanks to the recently elucidated crystal structure complexes between sulfonamide pterin conjugates and dihydropteroate synthase (DHPS) together with a published set of thirty- six synthetic dapsone derivatives with their reported entropy-driven activity data. Only a few congeners were slightly better than dapsone. OBJECTIVE: Our study aimed at demonstrating the applicability of thermodynamic QSAR and to shed light on the mechanistic aspects of sulfone binding to DHPS. METHODS: To this end ligand docking to DHPS, quantum mechanical properties, 2D- and 3D-QSAR as well as Principle Component Analysis (PCA) were carried out. RESULTS: The short aryl substituents of the docked pterin-sulfa conjugates were outward oriented into the solvent space without interacting with target residues which explains why binding enthalpy (ΔH) did not correlate with potency. PCA revealed how chemically informative descriptors are evenly loaded on the first three PCs (interpreted as ΔG, ΔH and ΔS), while chemically cryptic ones reflected higher dimensional (complex) loadings. CONCLUSION: It is safe to utter that synthesis efforts to introduce short side chains for aryl derivatization of the dapsone scaffold have failed in the past. On theoretical grounds we provide computed evidence why dapsone is not a pharmacodynamic lead for drug profiling because enthalpic terms do not change significantly at the moment of ligand binding to target.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Dapsona/análogos & derivados , Dapsona/farmacología , Dihidropteroato Sintasa/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Peste/tratamiento farmacológico , Peste/microbiología , Relación Estructura-Actividad Cuantitativa , Termodinámica , Yersinia pestis/efectos de los fármacos , Yersinia pestis/enzimología
14.
Innate Immun ; 26(5): 364-380, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31874581

RESUMEN

Electrostatic interactions between phosphate anions and Toll-like receptor 4 / Myeloid differentiation factor-2 (TLR4/MD-2) protein complexes of human, murine, equine and canine species were computed. Such knowledge can provide mechanistic information about recognising LPS-like ligands, since anionic phosphate groups belong to the structural features of LPS with their diphosphorylated diglucosamine backbone. Sequence composition analyses, electrostatic interaction potentials and docked energies as well as molecular dynamics studies evaluated the phosphate interactions within the triangular LPS binding site (wedge). According to electrostatic analyses, human, horse and dog wedges possess phosphate-binding sites with indistinct positive and negative charge distributions, but the murine wedge shows a unique strong negative net charge at the site where antagonists bind in other species (Pan). Docking of a phosphate mono-anion (probe) confirmed its repulsion at this Pan site, but the Pag site of the murine wedge attracted the probe. It is occupied by phosphate groups of agonists in other species (Pag). Molecular dynamics trajectories show a variable degree of random walk across the wedges, that is, not following electrostatic preferences (neither Pag nor Pan). In summary, two opposing electrostatic patterns exist -murine versus human, equine and canine species - all of which reflect the potential dual activity mode of under-acylated ligands such as lipid IVA.


Asunto(s)
Lípidos/química , Fosfatos/química , Receptor Toll-Like 4/química , Secuencia de Aminoácidos , Animales , Perros , Caballos , Humanos , Inmunidad Innata , Ratones , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Electricidad Estática , Relación Estructura-Actividad
15.
J Biol Chem ; 294(50): 19405-19423, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31704704

RESUMEN

Lipopolysaccharide (LPS) from the Gram-negative bacterial outer membrane potently activates the human innate immune system. LPS is recognized by the Toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD2) complex, leading to the release of pro-inflammatory cytokines. Alkaline phosphatase (AP) is currently being investigated as an anti-inflammatory agent for detoxifying LPS through dephosphorylating lipid A, thus providing a potential treatment for managing both acute (sepsis) and chronic (metabolic endotoxemia) pathologies wherein aberrant TLR4/MD2 activation has been implicated. Endogenous LPS preparations are chemically heterogeneous, and little is known regarding the LPS chemotype substrate range of AP. Here, we investigated the activity of AP on a panel of structurally defined LPS chemotypes isolated from Escherichia coli and demonstrate that calf intestinal AP (cIAP) has only minimal activity against unmodified enteric LPS chemotypes. Pi was only released from a subset of LPS chemotypes harboring spontaneously labile phosphoethanolamine (PEtN) modifications connected through phosphoanhydride bonds. We demonstrate that the spontaneously hydrolyzed O-phosphorylethanolamine is the actual substrate for AP. We found that the 1- and 4'-lipid A phosphate groups critical in TLR4/MD2 signaling become susceptible to hydrolysis only after de-O-acylation of ester linked primary acyl chains on lipid A. Furthermore, PEtN modifications on lipid A specifically enhanced hTLR4 agonist activity of underacylated LPS preparations. Computational binding models are proposed to explain the limitation of AP substrate specificity imposed by the acylation state of lipid A, and the mechanism of PEtN in enhancing hTLR4/MD2 signaling.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Intestinos/enzimología , Lipopolisacáridos/metabolismo , Animales , Bovinos , Escherichia coli/química , Lipopolisacáridos/química , Lipopolisacáridos/aislamiento & purificación , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Especificidad por Sustrato
16.
ADMET DMPK ; 7(4): 252-266, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-35359616

RESUMEN

The present study aims at numerically describing to what extent substrate - enzyme complexes in solution may change over time as a natural process of conformational changes for a liganded enzyme in comparison to those movements which occur independently from substrate interaction, i.e. without a ligand. To this end, we selected structurally known pairs of liganded / unliganded CYP450 3A4 enzymes with different geometries hinting at induced fit events. We carried out molecular dynamics simulations (MD) comparing the trajectories in a "cross-over" protocol: (i) we added the ligand to the unliganded crystal form which should adopt geometries similar to the known geometry of the liganded crystal structure during MD, and - conversely - (ii) we removed the bound ligand form the known liganded complex to test if a geometry similar to the known unliganded (apo-) form can be adopted during MD. To compare continues changes we measured root means square deviations and frequencies. Results for case (i) hint at larger conformational changes required for accepting the substrate during its approach to final position - in contrast to case (ii) when mobility is fairly reduced by ligand binding (strain energy). In conclusion, a larger conformational sampling prior to ligand binding and the freezing-in (rigidity) of conformations for bound ligands can be interpreted as two conditions linked to induced-fit.

17.
Bioorg Med Chem Lett ; 27(15): 3490-3494, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28645659

RESUMEN

We designed and synthesized five new 5-nitrothiazole-NSAID chimeras as analogues of nitazoxanide, using a DCC-activated amidation. Compounds 1-5 were tested in vitro against a panel of five protozoa: 2 amitochondriates (Giardia intestinalis, Trichomonas vaginalis) and 3 kinetoplastids (Leishmania mexicana, Leishmania amazonensis and Trypanosoma cruzi). All chimeras showed broad spectrum and potent antiprotozoal activities, with IC50 values ranging from the low micromolar to nanomolar order. Compounds 1-5 were even more active than metronidazole and nitazoxanide, two marketed first-line drugs against giardiasis. In particular, compound 4 (an indomethacin hybrid) was one of the most potent of the series, inhibiting G. intestinalis growth in vitro with an IC50 of 0.145µM. Compound 4 was 38-times more potent than metronidazole and 8-times more active than nitazoxanide. The in vivo giardicidal effect of 4 was evaluated in a CD-1 mouse model obtaining a median effective dose of 1.709µg/kg (3.53nmol/kg), a 321-fold and 1015-fold increase in effectiveness after intragastric administration over metronidazole and nitazoxanide, respectively. Compounds 1 and 3 (hybrids of ibuprofen and clofibric acid), showed potent giardicidal activities in the in vitro as well as in the in vivo assays after oral administration. Therefore, compounds 1-5 constitute promising drug candidates for further testing in experimental chemotherapy against giardiasis, trichomoniasis, leishmaniasis and even trypanosomiasis infections.


Asunto(s)
Antiprotozoarios/química , Antiprotozoarios/uso terapéutico , Giardia lamblia/efectos de los fármacos , Giardiasis/tratamiento farmacológico , Tiazoles/química , Tiazoles/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Antiprotozoarios/síntesis química , Antiprotozoarios/farmacología , Diseño de Fármacos , Femenino , Humanos , Leishmania/efectos de los fármacos , Ratones , Nitrocompuestos , Infecciones por Protozoos/tratamiento farmacológico , Tiazoles/síntesis química , Tiazoles/farmacología , Trichomonas vaginalis/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos
18.
Eur J Pharmacol ; 796: 215-223, 2017 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-28057491

RESUMEN

Mefloquine constitutes a multitarget antimalaric that inhibits cation currents. However, the effect and the binding site of this compound on Na+ channels is unknown. To address the mechanism of action of mefloquine, we employed two-electrode voltage clamp recordings on Xenopus laevis oocytes, site-directed mutagenesis of the rat Na+ channel, and a combined in silico approach using Molecular Dynamics and docking protocols. We found that mefloquine: i) inhibited Nav1.4 currents (IC50 =60µM), ii) significantly delayed fast inactivation but did not affect recovery from inactivation, iii) markedly the shifted steady-state inactivation curve to more hyperpolarized potentials. The presence of the ß1 subunit significantly reduced mefloquine potency, but the drug induced a significant frequency-independent rundown upon repetitive depolarisations. Computational and experimental results indicate that mefloquine overlaps the local anaesthetic binding site by docking at a hydrophobic cavity between domains DIII and DIV that communicates the local anaesthetic binding site with the selectivity filter. This is supported by the fact that mefloquine potency significantly decreased on mutant Nav1.4 channel F1579A and significantly increased on K1237S channels. In silico this compound docked above F1579 forming stable π-π interactions with this residue. We provide structure-activity insights into how cationic amphiphilic compounds may exert inhibitory effects by docking between the local anaesthetic binding site and the selectivity filter of a mammalian Na+ channel. Our proposed synergistic cycle of experimental and computational studies may be useful for elucidating binding sites of other drugs, thereby saving in vitro and in silico resources.


Asunto(s)
Anestésicos Locales/metabolismo , Anestésicos Locales/farmacología , Mefloquina/metabolismo , Mefloquina/farmacología , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Sitios de Unión , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos/efectos de los fármacos , Lidocaína/metabolismo , Lidocaína/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/genética , Conformación Proteica , Ratas
19.
Eur Biophys J ; 46(5): 485-494, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28012039

RESUMEN

The mechanism of inactivation of mammalian voltage-gated Na+ channels involves transient interactions between intracellular domains resulting in direct pore occlusion by the IFM motif and concomitant extracellular interactions with the ß1 subunit. Navß1 subunits constitute single-pass transmembrane proteins that form protein-protein associations with pore-forming α subunits to allosterically modulate the Na+ influx into the cell during the action potential of every excitable cell in vertebrates. Here, we explored the role of the intracellular IFM motif of rNav1.4 (skeletal muscle isoform of the rat Na+ channel) on the α-ß1 functional interaction and showed for the first time that the modulation of ß1 is independent of the IFM motif. We found that: (1) Nav1.4 channels that lack the IFM inactivation particle can undergo a "C-type-like inactivation" albeit in an ultraslow gating mode; (2) ß1 can significantly accelerate the inactivation of Nav1.4 channels in the absence of the IFM motif. Previously, we identified two residues (T109 and N110) on the ß1 subunit that disrupt the α-ß1 allosteric modulation. We further characterized the electrophysiological effects of the double alanine substitution of these residues demonstrating that it decelerates inactivation and recovery from inactivation, abolishes the modulation of steady-state inactivation and induces a current rundown upon repetitive stimulation, thus causing a general loss of function. Our results contribute to delineating the process of the mammalian Na+ channel inactivation. These findings may be relevant to the design of pharmacological strategies, targeting ß subunits to treat pathologies associated to Na+ current dysfunction.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Animales , Fenómenos Electrofisiológicos , Espacio Intracelular/metabolismo , Cinética , Modelos Moleculares , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Ratas
20.
Curr Med Chem ; 23(25): 2874-2891, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26997154

RESUMEN

Public academic research sites, private institutions as well as small companies have made substantial contributions to the ongoing development of antidiabetic vanadium compounds. But why is this endeavor not echoed by the globally operating pharmaceutical companies, also known as "Big Pharma"? Intriguingly, today's clinical practice is in great need to improve or replace insulin treatment against Diabetes Mellitus (DM). Insulin is the mainstay therapeutically and economically. So, why do those companies develop potential antidiabetic drug candidates without vanadium (vanadium- free)? We gathered information about physicochemical and pharmacological properties of known vanadium-containing antidiabetic compounds from the specialized literature, and converted the data into explanations (arguments, the "pros and cons") about the underpinnings of antidiabetic vanadium. Some discoveries were embedded in chronological order while seminal reviews of the last decade about the Medicinal chemistry of vanadium and its history were also listed for further understanding. In particular, the concepts of so-called "noncomplexed or free" vanadium species (i.e. inorganic oxido-coordinated species) and "biogenic speciation" of antidiabetic vanadium complexes were found critical and subsequently documented in more details to answer the question.


Asunto(s)
Complejos de Coordinación/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Vanadio/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacocinética , Diseño de Fármacos , Industria Farmacéutica , Semivida , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...