Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 108
1.
PLoS One ; 19(4): e0299551, 2024.
Article En | MEDLINE | ID: mdl-38630753

Extreme global warming and environmental changes associated with the Toarcian (Lower Jurassic) Oceanic Anoxic Event (T-OAE, ~183 Mya) profoundly impacted marine organisms and terrestrial plants. Despite the exceptionally elevated abundances of fossil insects from strata of this age, only assemblages from Germany and Luxembourg have been studied in detail. Here, we focus on the insect assemblage found in strata recording the T-OAE at Alderton Hill, Gloucestershire, UK, where <15% of specimens have previously been described. We located all known fossil insects (n = 370) from Alderton Hill, and used these to create the first comprehensive taxonomic and taphonomic analysis of the entire assemblage. We show that a diverse palaeoentomofaunal assemblage is preserved, comprising 12 orders, 21 families, 23 genera and 21 species. Fossil disarticulation is consistent with insect decay studies. The number of orders is comparable with present-day assemblages from similar latitudes (30°-40°N), including the Azores, and suggests that the palaeoentomofauna reflects a life assemblage. At Alderton, Hemiptera, Coleoptera and Orthoptera are the commonest (56.1%) orders. The high abundance of Hemiptera (22.1%) and Orthoptera (13.4%) indicates well-vegetated islands, while floral changes related to the T-OAE may be responsible for hemipteran diversification. Predatory insects are relatively abundant (~10% of the total assemblage) and we hypothesise that the co-occurrence of fish and insects within the T-OAE represents a jubilee-like event. The marginally higher proportion of sclerotised taxa compared to present-day insect assemblages possibly indicates adaptation to environmental conditions or taphonomic bias. The coeval palaeoentomofauna from Strawberry Bank, Somerset is less diverse (9 orders, 12 families, 6 genera, 3 species) and is taphonomically biased. The Alderton Hill palaeoentomofauna is interpreted to be the best-preserved and most representative insect assemblage from Toarcian strata in the UK. This study provides an essential first step towards understanding the likely influence of the T-OAE on insects.


Fossils , Hypoxia , Humans , Animals , Oceans and Seas , Insecta , United Kingdom
2.
Int Rev Neurobiol ; 173: 187-215, 2023.
Article En | MEDLINE | ID: mdl-37993178

Astrocytes are highly involved in a multitude of developmental processes that are known to be dysregulated in Fragile X Syndrome. Here, we examine these processes individually and review the roles astrocytes play in contributing to the pathology of this syndrome. As a growing area of interest in the field, new and exciting insight is continually emerging. Understanding these glial-mediated roles is imperative for elucidating the underlying molecular mechanisms at play, not only in Fragile X Syndrome, but also other ASD-related disorders. Understanding these roles will be central to the future development of effective, clinically-relevant treatments of these disorders.


Fragile X Syndrome , Humans , Fragile X Syndrome/pathology , Fragile X Mental Retardation Protein , Astrocytes
3.
J Mol Graph Model ; 121: 108443, 2023 06.
Article En | MEDLINE | ID: mdl-36870228

The main protease of SARS-CoV-2 (called Mpro or 3CLpro) is essential for processing polyproteins encoded by viral RNA. Several Mpro mutations were found in SARS-CoV-2 variants, which are related to higher transmissibility, pathogenicity, and resistance to neutralization antibodies. Macromolecules adopt several favored conformations in solution depending on their structure and shape, determining their dynamics and function. In this study, we used a hybrid simulation method to generate intermediate structures along the six lowest frequency normal modes and sample the conformational space and characterize the structural dynamics and global motions of WT SARS-CoV-2 Mpro and 48 mutations, including mutations found in P.1, B.1.1.7, B.1.351, B.1.525 and B.1.429+B.1.427 variants. We tried to contribute to the elucidation of the effects of mutation in the structural dynamics of SARS-CoV-2 Mpro. A machine learning analysis was performed following the investigation regarding the influence of the K90R, P99L, P108S, and N151D mutations on the dimeric interface assembling of the SARS-CoV-2 Mpro. The parameters allowed the selection of potential structurally stable dimers, which demonstrated that some single surface aa substitutions not located at the dimeric interface (K90R, P99L, P108S, and N151D) are able to induce significant quaternary changes. Furthermore, our results demonstrated, by a Quantum Mechanics method, the influence of SARS-CoV-2 Mpro mutations on the catalytic mechanism, confirming that only one of the chains of the WT and mutant SARS-CoV-2 Mpros are prone to cleave substrates. Finally, it was also possible to identify the aa residue F140 as an important factor related to the increasing enzymatic reactivity of a significant number of SARS-CoV-2 Mpro conformations generated by the normal modes-based simulations.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Mutation , Peptide Hydrolases , Protease Inhibitors/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Antiviral Agents/chemistry
4.
J Mol Graph Model ; 118: 108359, 2023 01.
Article En | MEDLINE | ID: mdl-36279761

The Human Dopamine Transporter (hDAT) plays an essential role in modulating the Influx/Efflux of dopamine, and it is involved in the mechanism of certain neurodegenerative diseases such as Parkinson's disease. Several studies have reported important states for Dopamine transport: outward-facing open state (OFo), the outward-facing closed state (OFc), the holo-occluded state closed (holo), and the inward-facing open state (IFo). Furthermore, experimental assays have shown that different phosphorylation conditions in hDAT can affect the rate of dopamine absorption. We present a protocol using hybrid simulation methods to study the conformational dynamics and stability of states of hDAT under different phosphorylation sites. With this protocol, we explored the conformational space of hDAT, identified the states, and evaluated the free energy differences and the transition probabilities between them in each of the phosphorylation cases. We also presented the conformational changes and correlated them with those described in the literature. There is a thesis/hypothesis that the phosphorylation condition corresponding to NP-333 system (where all sites Ser/Thr from residue 2 to 62 and 254 to 613 are phosphorylated, except residue 333) would decrease the rate of dopamine transport from the extracellular medium to the intracellular medium by hDAT as previously described in the literature by Lin et al., 2003. Our results corroborated this thesis/hypothesis and the data reported. It is probably due to the affectation/changes/alteration of the conformational dynamics of this system that makes the intermediate states more likely and makes it difficult to initial states associated with the uptake of dopamine in the extracellular medium, corroborating the experimental results. Furthermore, our results showed that just single phosphorylation/dephosphorylation could alter intrinsic protein motions affecting the sampling of one or more states necessary for dopamine transport. In this sense, the modification of phosphorylation influences protein movements and conformational preferences, affecting the stability of states and the transition between them and, therefore, the transport.


Dopamine Plasma Membrane Transport Proteins , Molecular Dynamics Simulation , Humans , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine/metabolism , Phosphorylation
6.
Insects ; 12(6)2021 Jun 01.
Article En | MEDLINE | ID: mdl-34206033

The impact of elevated CO2 (eCO2) on plant-pollinator interactions is poorly understood. This study provides the first systematic review of this topic and identifies important knowledge gaps. In addition, we present field data assessing the impact of eCO2 (150 ppm above ambient) on bluebell (Hyacinthoides non-scripta)-pollinator interactions within a mature, deciduous woodland system. Since 1956, only 71 primary papers have investigated eCO2 effects on flowering time, floral traits and pollination, with a mere 3 studies measuring the impact on pollination interactions. Our field experiment documented flowering phenology, flower visitation and seed production, as well as the abundance and phenology of dominant insect pollinators. We show that first and mid-point flowering occurred 6 days earlier under eCO2, but with no change in flowering duration. Syrphid flies and bumble bees were the dominant flower visitors, with peak activity recorded during mid- and late-flowering periods. Whilst no significant difference was recorded in total visitation or seed set between eCO2 and ambient treatments, there were clear patterns of earlier flowering under eCO2 accompanied by lower pollinator activity during this period. This has implications for potential loss of synchrony in pollination systems under future climate scenarios, with associated long-term impacts on abundance and diversity.

7.
Insects ; 11(7)2020 Jul 14.
Article En | MEDLINE | ID: mdl-32674412

The habitat of the intertidal flightless midge Telmatogeton magellanicus (Jacobs, 1900) is described for the first time from the northern coast of Navarino Island, Tierra del Fuego, Chile. Additionally, we report the first observations of adult behaviour in the wild. We delineate the species' distribution across three tidal zones (high, mid and low), and identify substrate characteristics that favour the presence of the midge. The mid-tide zone was the key habitat utilized by T. magellanicus, with lower densities in the low-tide zone and no presence in the high-tide zone. There was a strong association between the presence of larvae and filamentous algae, especially Bostrychia spp. and, to a lesser extent, Ulva spp., as well as between larvae and the presence of larger, more stable boulders. As a result, the species' overall distribution was widespread but patchy. We suggest that the main limiting factor is the relative humidity experienced in different habitats. One of the most striking features of the behavioural observations during data collection was the extremely active adults, which suggests high energy expenditure over a very short period of time. This may be due to the limited time available to find mates in a single low-tide period, when adults have about three hours after emerging from the pupa to complete mating and oviposition before inundation by the tide. The data presented here provide a baseline for future studies on this species' ecology, phenology, physiology and general biology.

8.
Insects ; 11(3)2020 Feb 26.
Article En | MEDLINE | ID: mdl-32111052

An insect's ability to tolerate winter conditions is a critical determinant of its success. This is true for both native and invasive species, and especially so in harsh polar environments. The midge Eretmoptera murphyi (Diptera, Chironomidae) is invasive to maritime Antarctic Signy Island, and the ability of fourth instar larvae to tolerate freezing is hypothesized to allow the species to extend its range further south. However, no detailed assessment of stress tolerance in any other life stage has yet been conducted. Here, we report that, although larvae, pupae and adults all have supercooling points (SCPs) of around -5 °C, only the larvae are freeze-tolerant, and that cold-hardiness increases with larval maturity. Eggs are freeze-avoiding and have an SCP of around -17 °C. At -3.34 °C, the CTmin activity thresholds of adults are close to their SCP of -5 °C, and they are likely chill-susceptible. Larvae could not withstand the anoxic conditions of ice entrapment or submergence in water beyond 28 d. The data obtained here indicate that the cold-tolerance characteristics of this invasive midge would permit it to colonize areas further south, including much of the western coast of the Antarctic Peninsula.

9.
Polar Biol ; 42(1): 115-130, 2019.
Article En | MEDLINE | ID: mdl-30872890

Knowledge of the life cycles of non-native species in Antarctica is key to understanding their ability to establish and spread to new regions. Through laboratory studies and field observations on Signy Island (South Orkney Islands, maritime Antarctic), we detail the life stages and phenology of Eretmoptera murphyi (Schaeffer 1914), a brachypterous chironomid midge introduced to Signy in the 1960s from sub-Antarctic South Georgia where it is endemic. We confirm that the species is parthenogenetic and suggest that this enables E. murphyi to have an adult emergence period that extends across the entire maritime Antarctic summer season, unlike its sexually reproducing sister species Belgica antarctica which is itself endemic to the Antarctic Peninsula and South Shetland Islands. We report details of previously undescribed life stages, including verification of four larval instars, pupal development, egg gestation and development, reproductive viability and discuss potential environmental cues for transitioning between these developmental stages. Whilst reproductive success is limited to an extent by high mortality at eclosion, failure to oviposit and low egg-hatching rate, the population is still able to potentially double in size with every life cycle.

10.
Polar Biol ; 42(2): 271-284, 2019.
Article En | MEDLINE | ID: mdl-30872891

Understanding the physiology of non-native species in Antarctica is key to elucidating their ability to colonise an area, and how they may respond to changes in climate. Eretmoptera murphyi is a chironomid midge introduced to Signy Island (Maritime Antarctic) from South Georgia (Sub-Antarctic) where it is endemic. Here, we explore the tolerance of this species' egg masses to heat and desiccation stress encountered within two different oviposition microhabitats (ground surface vegetation and underlying soil layer). Our data show that, whilst oviposition takes place in both substrates, egg sacs laid individually in soil are at the greatest risk of failing to hatch, whilst those aggregated in the surface vegetation have the lowest risk. The two microhabitats are characterised by significantly different environmental conditions, with greater temperature fluctuations in the surface vegetation, but lower humidity (%RH) and available water content in the soil. Egg sacs were not desiccation resistant and lost water rapidly, with prolonged exposure to 75% RH affecting survival for eggs in singly oviposited egg sacs. In contrast, aggregated egg sacs (n = 10) experienced much lower desiccation rates and survival of eggs remained above 50% in all treatments. Eggs had high heat tolerance in the context of the current microhabitat conditions on Signy. We suggest that the atypical (for this family) use of egg sac aggregation in E. murphyi has developed as a response to environmental stress. Current temperature patterns and extremes on Signy Island are unlikely to affect egg survival, but changes in the frequency and duration of extreme events could be a greater challenge.

11.
Physiol Entomol ; 43(4): 334-345, 2018 Dec.
Article En | MEDLINE | ID: mdl-30546196

Lethal time50 (LTime50) and lethal temp (LTemp50) are commonly used laboratory indices of arthropod cold tolerance, with the former often being employed to predict winter survival in the field. In the present study, we compare the cold tolerance of different life-history stages (nondiapausing and diapausing females, as well as males and juveniles) of a major agricultural pest: the two-spot spider mite Tetranychus urticae Koch (Acarina: Tetranychidae). Diapausing females from European populations of this species are shown to be freeze avoiding, supercooling to -23.6 ± 0.37  °C and with an LTemp50 of -23.2 °C. However, nondiapausing females [supercooling point (SCP) -19.1 ± 0.49 °C, LTemp50 -14.32 °C], males (SCP -21.27 ± 0.52  °C, LTemp50 -16 °C) and juveniles (SCP -25.34 ± 0.29 °C, LTemp50 -18.3 °C) are subclassified as strongly chill tolerant juveniles. LTime50 is 148.3 days for non-acclimated diapausing females, whereas nondiapausing females, males and juveniles reach 50% mortality by 21.7 days. When individuals are acclimated at 10 °C for a period of 7 days, no effect is found. Cold tolerance is suggested to be a major contributor to the successful spread of T. urticae across temperate countries, although it is dependent on a diapause trait, suggesting a potential target for control. Winter field trial data from diapausing females indicate that LTime50 is a reliable indicator of winter survival even within diapause, supporting the use of these indices as a valuable component within environmental niche models for the prediction of future pest invasions.

12.
Parasite Immunol ; 39(8)2017 Aug.
Article En | MEDLINE | ID: mdl-28475238

In endemic regions, it is not uncommon for patients to be co-infected with soil-transmitted helminths and malaria. Although both malaria and many helminth species use the lungs as a site of development, little attention has been paid to the impact that pulmonary immunity induced by one parasite has on the lung response to the other. To model the consequences of a prior hookworm exposure on the development of immunity to malaria in the lungs, mice were infected with Nippostrongylus brasiliensis and 2 weeks later challenged with Plasmodium berghei. We found that a pre-existing hookworm-induced type 2 immune environment had a measurable but modest impact on the nature of the malaria-driven type 1 cytokine response in the lungs that was associated with a transient effect on parasite development and no significant changes in morbidity and mortality after malaria infection. However, prior hookworm infection did have a lasting effect on lung macrophages, where the malaria-induced M1-like response was blunted by previous M2 polarization. These results demonstrate that, although helminth parasites confer robust changes to the immunological status of the pulmonary microenvironment, lung immunity is plastic and capable of rapidly adapting to consecutive heterologous infections.


Malaria/immunology , Nippostrongylus/immunology , Plasmodium berghei/immunology , Strongylida Infections/immunology , Animals , Coinfection , Cytokines , Lung/immunology , Macrophages, Alveolar/immunology , Male , Mice , Mice, Inbred BALB C
13.
Nat Commun ; 8: 14208, 2017 01 27.
Article En | MEDLINE | ID: mdl-28128208

Alternatively activated macrophages (M2) have an important function in innate immune responses to parasitic helminths, and emerging evidence also indicates these cells are regulators of systemic metabolism. Here we show a critical role for mTORC2 signalling in the generation of M2 macrophages. Abrogation of mTORC2 signalling in macrophages by selective conditional deletion of the adaptor molecule Rictor inhibits the generation of M2 macrophages while leaving the generation of classically activated macrophages (M1) intact. Selective deletion of Rictor in macrophages prevents M2 differentiation and clearance of a parasitic helminth infection in mice, and also abrogates the ability of mice to regulate brown fat and maintain core body temperature. Our findings define a role for mTORC2 in macrophages in integrating signals from the immune microenvironment to promote innate type 2 immunity, and also to integrate systemic metabolic and thermogenic responses.


Macrophages/physiology , Mechanistic Target of Rapamycin Complex 2/immunology , Strongylida Infections/immunology , Thermogenesis/physiology , Animals , Cell Differentiation/immunology , Cells, Cultured , Disease Models, Animal , Female , Gene Knockout Techniques , Helminthiasis, Animal/immunology , Humans , Immunity, Innate/physiology , Male , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice , Mice, Inbred C57BL , Nippostrongylus/immunology , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/immunology , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Signal Transduction/physiology , Strongylida Infections/parasitology
14.
Am J Transplant ; 17(1): 103-114, 2017 01.
Article En | MEDLINE | ID: mdl-27575845

Solid organ transplant recipients (SOTRs) are at increased risk of developing and dying from cancer. However, controversies exist around cancer screening in this population owing to reduced life expectancy and competing causes of death. This systematic review assesses the availability, quality and consistency of cancer screening recommendations in clinical practice guidelines (CPGs). We systematically searched bibliographic databases and gray literature to identify CPGs and assessed their quality using AGREE II. Recommendations were extracted along with their supporting evidence. Thirteen guidelines were included in the review. CPGs for kidney recipients were the most frequent source of screening recommendations, and recommendations for skin cancer screening were most frequently presented. Some screening recommendations differed from those for the general population, based on literature demonstrating higher cancer incidence among SOTRs versus direct evidence of screening effectiveness. Relevant stakeholders such as oncology specialists, primary care providers and public health experts were not involved in the formulation of the screening recommendations. In conclusion, although several guidelines make recommendations for cancer screening in SOTRs, the availability of cancer screening recommendations varied considerably by transplanted organ. More studies are required to inform cancer screening recommendations in SOTRs, and guideline development should involve transplant patients, oncologists and cancer screening specialists.


Neoplasms/diagnosis , Organ Transplantation/adverse effects , Practice Guidelines as Topic/standards , Early Detection of Cancer , Humans , Neoplasms/etiology , Neoplasms/prevention & control , Prognosis , Transplant Recipients
15.
Apidologie ; 47: 66-75, 2016.
Article En | MEDLINE | ID: mdl-26855454

Bumblebees are regularly exported to countries outside their native range for the purposes of commercial pollination. In contrast to the tight regulations imposed on biological control introductions, the movement of bumblebees has largely been without risk assessment. This study represents the first formal assessment of establishment risk for Bombus terrestris dalmatinus in the UK. The ability of workers to survive winter conditions is seen as the primary barrier to establishment, given the year-round colony activity of this sub-species. We use standardised cold tolerance indices as outlined by the EU policy support action 'REBECA' as well as assessing rapid cold hardening (RCH) ability. Cold tolerance was comparable to that of the UK-native Bombus terrestris audax, including a strong RCH response. Results suggest that B. t. dalmatinus could survive mild UK winters in southern areas and potentially displace B. t. audax. The implications of ongoing climate change on establishment risks are discussed.

16.
Glob Chang Biol ; 22(2): 556-66, 2016 Feb.
Article En | MEDLINE | ID: mdl-26234897

Many species are more restricted in their habitat associations at the leading edges of their range margins, but some species have broadened their habitat associations in these regions during recent climate change. We examine the effects of multiple, interacting climatic variables on spatial and temporal patterns of species' habitat associations, using the speckled wood butterfly, Pararge aegeria, in Britain, as our model taxon. Our analyses reveal that this species, traditionally regarded as a woodland-dependent insect, is less restricted to woodland in regions with warmer winters and warmer and wetter summers. In addition, over the past 40 years of climate change, the species has become less restricted to woodland in locations where temperature and summer rainfall have increased most. We show that these patterns arise mechanistically because larval growth rates are slower in open (i.e. nonwoodland) habitats associated with colder microclimates in winter and greater host plant desiccation in summer. We conclude that macro- and microclimatic interactions drive variation in species' habitat associations, which for our study species resulted predominantly in a widening of habitat associations under climate change. However, species vary in their climatic and nonclimatic requirements, and so complex spatial and temporal patterns of changes in habitat associations are likely to be observed in future as the climate changes.


Butterflies , Climate Change , Ecosystem , Animals , Climate , Female , Forests , Spatio-Temporal Analysis , United Kingdom
17.
J Therm Biol ; 54: 118-32, 2015 Dec.
Article En | MEDLINE | ID: mdl-26615734

As small bodied poikilothermic ectotherms, invertebrates, more so than any other animal group, are susceptible to extremes of temperature and low water availability. In few places is this more apparent than in the Arctic and Antarctic, where low temperatures predominate and water is unusable during winter and unavailable for parts of summer. Polar terrestrial invertebrates express a suite of physiological, biochemical and genomic features in response to these stressors. However, the situation is not as simple as responding to each stressor in isolation, as they are often faced in combination. We consider how polar terrestrial invertebrates manage this scenario in light of their physiology and ecology. Climate change is also leading to warmer summers in parts of the polar regions, concomitantly increasing the potential for drought. The interaction between high temperature and low water availability, and the invertebrates' response to them, are therefore also explored.


Acclimatization/physiology , Invertebrates/physiology , Animals , Arctic Regions , Climate Change , Stress, Physiological , Temperature , Water
18.
PLoS One ; 10(7): e0131301, 2015.
Article En | MEDLINE | ID: mdl-26196923

Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10°C, but was strongest following 3h at 0°C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 ± 0.5°C and -4.9 ± 0.5°C, respectively) was significantly higher than for SW females (-3.2 ± 0.8°C and -8.5 ± 0.6°C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable temperature conditions.


Acclimatization/physiology , Animal Feed , Cold Temperature , Diptera/physiology , Meat , Animals , Female , Life Cycle Stages/physiology , Male , Reproduction/physiology
19.
Parasite Immunol ; 36(9): 463-74, 2014 Sep.
Article En | MEDLINE | ID: mdl-25201409

Parasitic helminths infect well over one billion people and typically cause chronic and recurrent infections that exert a considerable toll on human health and productivity. A significant number of important intestinal- and tissue-dwelling helminth parasites have evolved a scripted migration through select organ systems. Of specific interest here are the helminth parasites that interact with respiratory tissues and the pulmonary immune system. This review will consider the nature of the interactions between helminth parasites and the lung environment, as well as the consequences of these interactions on the evolution of parasitism and host immunity.


Helminthiasis/immunology , Helminthiasis/parasitology , Lung Diseases, Parasitic/immunology , Lung Diseases, Parasitic/parasitology , Animals , Global Health , Helminthiasis/epidemiology , Host-Parasite Interactions/immunology , Humans , Lung Diseases, Parasitic/epidemiology
20.
J Exp Biol ; 217(Pt 9): 1454-61, 2014 May 01.
Article En | MEDLINE | ID: mdl-24436389

Predicting insect responses to global climate change involves understanding cross-generation effects of temperature. The majority of temperate insects overwinter in a state of diapause, a pre-emptive response to winter conditions associated with increased cold hardiness. Diapause is often induced following maternal adult detection of an environmental cue signifying the onset of winter, whilst diapause is initiated in a subsequent life stage and/or generation. Continued global warming will expose adults to higher late-autumn temperatures, whilst diapause life stages will still experience prolonged winter cold. The cross-generation effect of temperature was investigated by acclimating adult Calliphora vicina to present-day (15°C) and future (20°C) late-autumn conditions and assessing cold-hardiness in diapause (D15 and D20) and non-diapause (ND15 and ND20) progeny. A cross-generation plasticity in cold hardiness was associated with D but not ND larvae. D15 larvae exhibited an enhanced ability to suppress internal freezing (supercooling point=-18.9±0.9°C) compared with D20 (-15.3±0.8°C), and displayed a greater tolerance of prolonged exposure to -4°C (LT50=26.0±1.0 and 11.4±1.1 days, respectively) and -8°C (5.1±1.1 and 3.0±1.1 days, respectively). These changes were associated with a reduced glucose content in D15 (2.4±0.3 g mg(-1)) compared with D20 (3.0±0.3 g mg(-1)) larvae. In conclusion, C. vicina adults exposed to warmer autumn conditions during diapause induction will produce larvae with a reduced cold hardiness capacity, which could negatively impact winter survival. Given that maternal regulation of diapause is common among temperate insects, this could be a widespread phenomenon.


Cold Temperature , Diptera/physiology , Larva/physiology , Metamorphosis, Biological/physiology , Acclimatization/physiology , Animals , Climate Change , Freezing , Glucose/analysis , Seasons
...