Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(34): e2405986121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145928

RESUMEN

RAS GTPases associate with the biological membrane where they function as molecular switches to regulate cell growth. Recent studies indicate that RAS proteins oligomerize on membranes, and disrupting these assemblies represents an alternative therapeutic strategy. However, conflicting reports on RAS assemblies, ranging in size from dimers to nanoclusters, have brought to the fore key questions regarding the stoichiometry and parameters that influence oligomerization. Here, we probe three isoforms of RAS [Kirsten Rat Sarcoma viral oncogene (KRAS), Harvey Rat Sarcoma viral oncogene (HRAS), and Neuroblastoma oncogene (NRAS)] directly from membranes using mass spectrometry. We show that KRAS on membranes in the inactive state (GDP-bound) is monomeric but forms dimers in the active state (GTP-bound). We demonstrate that the small molecule BI2852 can induce dimerization of KRAS, whereas the binding of effector proteins disrupts dimerization. We also show that RAS dimerization is dependent on lipid composition and reveal that oligomerization of NRAS is regulated by palmitoylation. By monitoring the intrinsic GTPase activity of RAS, we capture the emergence of a dimer containing either mixed nucleotides or GDP on membranes. We find that the interaction of RAS with the catalytic domain of Son of Sevenless (SOScat) is influenced by membrane composition. We also capture the activation and monomer to dimer conversion of KRAS by SOScat. These results not only reveal the stoichiometry of RAS assemblies on membranes but also uncover the impact of critical factors on oligomerization, encompassing regulation by nucleotides, lipids, and palmitoylation.


Asunto(s)
Membrana Celular , Multimerización de Proteína , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Humanos , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Lipoilación , Proteínas ras/metabolismo , Proteínas ras/química , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
2.
Nat Commun ; 15(1): 5946, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009687

RESUMEN

The ATP-binding cassette (ABC) transporter, MsbA, plays a pivotal role in lipopolysaccharide (LPS) biogenesis by facilitating the transport of the LPS precursor lipooligosaccharide (LOS) from the cytoplasmic to the periplasmic leaflet of the inner membrane. Despite multiple studies shedding light on MsbA, the role of lipids in modulating MsbA-nucleotide interactions remains poorly understood. Here we use native mass spectrometry (MS) to investigate and resolve nucleotide and lipid binding to MsbA, demonstrating that the transporter has a higher affinity for adenosine 5'-diphosphate (ADP). Moreover, native MS shows the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL) can tune the selectivity of MsbA for adenosine 5'-triphosphate (ATP) over ADP. Guided by these studies, four open, inward-facing structures of MsbA are determined that vary in their openness. We also report a 2.7 Å-resolution structure of MsbA in an open, outward-facing conformation that is not only bound to KDL at the exterior site, but with the nucleotide binding domains (NBDs) adopting a distinct nucleotide-free structure. The results obtained from this study offer valuable insight and snapshots of MsbA during the transport cycle.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Adenosina Difosfato , Adenosina Trifosfato , Espectrometría de Masas , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/metabolismo , Adenosina Difosfato/metabolismo , Espectrometría de Masas/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Lipopolisacáridos/metabolismo , Lípido A/metabolismo , Lípido A/química , Unión Proteica , Modelos Moleculares , Cristalografía por Rayos X , Lípidos/química , Escherichia coli/metabolismo , Conformación Proteica
3.
Methods Mol Biol ; 2797: 177-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570460

RESUMEN

RAS is regulated by specific guanine nucleotide exchange factors, such as Son of Sevenless (SOS), that activates RAS by facilitating the exchange of inactive, GDP-bound RAS with GTP. The catalytic activity of SOS is known to be allosterically modulated by an active, GTP-bound RAS. However, it remains poorly understood how oncogenic RAS mutants interact with SOS and modulate its activity. In this chapter, we describe the application of native mass spectrometry (MS) to monitor the assembly of the catalytic domain of SOS (SOScat) with RAS and cancer-associated mutants. Results from this approach have led to the discovery of different molecular assemblies and distinct conformers of SOScat engaging KRAS. It was also found that KRASG13D exhibits high affinity for SOScat and is a potent allosteric modulator of its SOScat activity. KRASG13D-GTP can allosterically increase the nucleotide exchange rate of KRAS at the active site by more than twofold compared to the wild-type protein. Furthermore, small-molecule RAS•SOS disruptors fail to dissociate KRASG13D•SOScat complexes, underscoring the need for more potent disruptors targeting oncogenic RAS mutants. Taken together, native MS will be instrumental in better understanding the interaction between oncogenic RAS mutants and SOS, which is of crucial importance for development of improved therapeutics.


Asunto(s)
Nucleótidos , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Dominio Catalítico , Nucleótidos/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/metabolismo
4.
Protein Sci ; 33(4): e4973, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533546

RESUMEN

Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, for example, so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.


Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Proteínas , Proteínas/química
5.
bioRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986890

RESUMEN

Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, e.g., so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.

6.
Biochemistry ; 62(16): 2450-2460, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37487239

RESUMEN

Ras proteins in the mitogen-activated protein kinase (MAPK) signaling pathway represent one of the most frequently mutated oncogenes in cancer. Ras binds guanosine nucleotides and cycles between active (GTP) and inactive (GDP) conformations to regulate the MAPK signaling pathway. Guanosine and other nucleotides exist in cells as either 2'-hydroxy or 2'-deoxy forms, and imbalances in the deoxyribonucleotide triphosphate pool have been associated with different diseases, such as diabetes, obesity, and cancer. However, the biochemical properties of Ras bound to dGNP are not well understood. Herein, we use native mass spectrometry to monitor the intrinsic GTPase activity of H-Ras and N-Ras oncogenic mutants, revealing that the rate of 2'-deoxy guanosine triphosphate (dGTP) hydrolysis differs compared to the hydroxylated form, in some cases by seven-fold. Moreover, K-Ras expressed from HEK293 cells exhibited a higher than anticipated abundance of dGNP, despite the low abundance of dGNP in cells. Additionally, the GTPase and dGTPase activity of K-RasG12C was found to be accelerated by 10.2- and 3.8-fold in the presence of small molecule covalent inhibitors, which may open opportunities for the development of Pan-Ras inhibitors. The molecular assemblies formed between H-Ras and N-Ras, including mutant forms, with the catalytic domain of SOS (SOScat) were also investigated. The results show that the different mutants of H-Ras and N-Ras not only engage SOScat differently, but these assemblies are also dependent on the form of guanosine triphosphate bound to Ras. These findings bring to the forefront a new perspective on the nucleotide-dependent biochemical properties of Ras that may have implications for the activation of the MAPK signaling pathway and Ras-driven cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA