Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Bone Res ; 11(1): 16, 2023 Mar 14.
Article En | MEDLINE | ID: mdl-36918542

Paget's disease (PDB) is a late-onset bone remodeling disorder with a broad spectrum of symptoms and complications. One of the most aggressive forms is caused by the P937R mutation in the ZNF687 gene. Although the genetic involvement of ZNF687 in PDB has been extensively studied, the molecular mechanisms underlying this association remain unclear. Here, we describe the first Zfp687 knock-in mouse model and demonstrate that the mutation recapitulates the PDB phenotype, resulting in severely altered bone remodeling. Through microcomputed tomography analysis, we observed that 8-month-old mutant mice showed a mainly osteolytic phase, with a significant decrease in the trabecular bone volume affecting the femurs and the vertebrae. Conversely, osteoblast activity was deregulated, producing disorganized bone. Notably, this phenotype became pervasive in 16-month-old mice, where osteoblast function overtook bone resorption, as highlighted by the presence of woven bone in histological analyses, consistent with the PDB phenotype. Furthermore, we detected osteophytes and intervertebral disc degeneration, outlining for the first time the link between osteoarthritis and PDB in a PDB mouse model. RNA sequencing of wild-type and Zfp687 knockout RAW264.7 cells identified a set of genes involved in osteoclastogenesis potentially regulated by Zfp687, e.g., Tspan7, Cpe, Vegfc, and Ggt1, confirming its role in this process. Strikingly, in this mouse model, the mutation was also associated with a high penetrance of hepatocellular carcinomas. Thus, this study established an essential role of Zfp687 in the regulation of bone remodeling, offering the potential to therapeutically treat PDB, and underlines the oncogenic potential of ZNF687.

2.
Commun Biol ; 6(1): 9, 2023 01 04.
Article En | MEDLINE | ID: mdl-36599901

Profilin 1-encoded by PFN1-is a small actin-binding protein with a tumour suppressive role in various adenocarcinomas and pagetic osteosarcomas. However, its contribution to tumour development is not fully understood. Using fix and live cell imaging, we report that Profilin 1 inactivation results in multiple mitotic defects, manifested prominently by anaphase bridges, multipolar spindles, misaligned and lagging chromosomes, and cytokinesis failures. Accordingly, next-generation sequencing technologies highlighted that Profilin 1 knock-out cells display extensive copy-number alterations, which are associated with complex genome rearrangements and chromothripsis events in primary pagetic osteosarcomas with Profilin 1 inactivation. Mechanistically, we show that Profilin 1 is recruited to the spindle midzone at anaphase, and its deficiency reduces the supply of actin filaments to the cleavage furrow during cytokinesis. The mitotic defects are also observed in mouse embryonic fibroblasts and mesenchymal cells deriving from a newly generated knock-in mouse model harbouring a Pfn1 loss-of-function mutation. Furthermore, nuclear atypia is also detected in histological sections of mutant femurs. Thus, our results indicate that Profilin 1 has a role in regulating cell division, and its inactivation triggers mitotic defects, one of the major mechanisms through which tumour cells acquire chromosomal instability.


Fibroblasts , Genomic Instability , Profilins , Animals , Humans , Mice , Anaphase/genetics , Cytokinesis/genetics , Genomic Instability/genetics , Mitosis/genetics , Profilins/genetics , Profilins/metabolism , Osteosarcoma/genetics , Osteosarcoma/metabolism
3.
Front Cell Dev Biol ; 10: 886305, 2022.
Article En | MEDLINE | ID: mdl-35646939

Osteoclasts are highly specialized cells of the bone, with a unique apparatus responsible for resorption in the process of bone remodeling. They are derived from differentiation and fusion of hematopoietic precursors, committed to form mature osteoclasts in response to finely regulated stimuli produced by bone marrow-derived cells belonging to the stromal lineage. Despite a highly specific function confined to bone degradation, emerging evidence supports their relevant implication in bone tumors and metastases. In this review, we summarize the physiological role of osteoclasts and then focus our attention on their involvement in skeletal tumors, both primary and metastatic. We highlight how osteoclast-mediated bone erosion confers increased aggressiveness to primary tumors, even those with benign features. We also outline how breast and pancreas cancer cells promote osteoclastogenesis to fuel their metastatic process to the bone. Furthermore, we emphasize the role of osteoclasts in reactivating dormant cancer cells within the bone marrow niches for manifestation of overt metastases, even decades after homing of latent disseminated cells. Finally, we point out the importance of counteracting tumor progression and dissemination through pharmacological treatments based on a better understanding of molecular mechanisms underlying osteoclast lytic activity and their recruitment from cancer cells.

4.
Cells ; 10(5)2021 05 14.
Article En | MEDLINE | ID: mdl-34068882

Bone is a highly complex and metabolically active tissue undergoing a continuous remodeling process, which endures throughout life. A complex cell-signaling system that plays role in regulating different physiological processes, including bone remodeling, is the endocannabinoid system (ECS). Bone mass expresses CB1 and CB2 cannabinoid receptors and enzymatic machinery responsible for the metabolism of their endogenous ligands, endocannabinoids (AEA and 2-AG). Exogenous AEA is reported to increase the early phase of human osteoblast differentiation in vitro. However, regarding this cell context little is known about how endocannabinoids and endocannabinoid-related N-acylethanolamines like PEA and OEA are modulated, in vitro, during cell differentiation and, in vivo, over time up to adulthood. Here we characterized the endocannabinoid tone during the different phases of the osteoblast differentiation process in MC3T3-E1 cells, and we measured endocannabinoid levels in mouse femurs at life cycle stages characterized by highly active bone growth (i.e., of juvenile, young adult, and mature adult bone). Endocannabinoid tone was significantly altered during osteoblast differentiation, with substantial OEA increment, decline in 2-AG and AEA, and consistent modulation of their metabolic enzymes in maturing and mineralized MC3T3-E1 cells. Similarly, in femurs, we found substantial, age-related, decline in 2-AG, OEA, and PEA. These findings can expand existing knowledge underlying physiological bone cell function and contribute to therapeutic strategies for preventing bone-related metabolic changes accruing through lifespan.


Endocannabinoids/metabolism , Osteoblasts , Osteogenesis , Animals , Cell Differentiation , Cell Line , Male , Mice , Mice, Inbred C57BL , Osteoblasts/cytology , Osteoblasts/metabolism
5.
Int J Mol Sci ; 22(7)2021 Mar 31.
Article En | MEDLINE | ID: mdl-33807278

Pompe disease is an autosomal recessive disorder caused by a deficiency in the enzyme acid alpha-glucosidase. The late-onset form of Pompe disease (LOPD) is characterized by a slowly progressing proximal muscle weakness, often involving respiratory muscles. In LOPD, the levels of GAA enzyme activity and the severity of the clinical pictures may be highly variable among individuals, even in those who harbour the same combination of GAA mutations. The result is an unpredictable genotype-phenotype correlation. The purpose of this study was to identify the genetic factors responsible for the progression, severity and drug response in LOPD. We report here on a detailed clinical, morphological and genetic study, including a whole exome sequencing (WES) analysis of 11 adult LOPD siblings belonging to two Italian families carrying compound heterozygous GAA mutations. We disclosed a heterogeneous pattern of myopathic impairment, associated, among others, with cardiac defects, intracranial vessels abnormality, osteoporosis, vitamin D deficiency, obesity and adverse response to enzyme replacement therapy (ERT). We identified deleterious variants in the genes involved in autophagy, immunity and bone metabolism, which contributed to the severity of the clinical symptoms observed in the LOPD patients. This study emphasizes the multisystem nature of LOPD and highlights the polygenic nature of the complex phenotype disclosed in these patients.


Autophagy/genetics , Glycogen Storage Disease Type II/genetics , alpha-Glucosidases/genetics , Adult , Aged , Autophagy/physiology , Enzyme Replacement Therapy/methods , Family , Female , Genetic Variation/genetics , Humans , Italy , Male , Middle Aged , Muscle, Skeletal/metabolism , Mutation , Pedigree , Respiratory Muscles , Siblings , alpha-Glucosidases/metabolism
6.
Cancer Lett ; 489: 1-8, 2020 10 01.
Article En | MEDLINE | ID: mdl-32502498

Giant cell tumor (GCT) is a bone-destructive benign neoplasm characterized by distinctive multinucleated osteoclast-like giant cells with osteolytic properties distributed among neoplastic stromal cells. GCT is locally aggressive with progressive invasion of adjacent tissues and occasionally displays malignant characteristics including lung metastasis. GCT is characterized genetically by highly recurrent somatic mutations at the G34 position of the H3F3A gene, encoding the histone variant H3.3, in stromal cells. This leads to deregulated gene expression and increased proliferation of mutation-bearing cells. However, when GCT complicates Paget disease of bone (GCT/PDB) it behaves differently, showing a more malignant phenotype with 5-year survival less than 50%. GCT/PDB is caused by a germline mutation in the ZNF687 gene, which encodes a transcription factor involved in the repression of genes surrounding DNA double-strand breaks to promote repair by homologous recombination. Identification of these driver mutations led to novel diagnostic tools for distinguishing between these two tumors and other osteoclast-rich neoplasms. Herein, we review the clinical, histological, and molecular features of GCT in different contexts focusing also on pharmacological treatments.


Bone Neoplasms/pathology , Giant Cell Tumor of Bone/pathology , Osteitis Deformans/pathology , Bone Neoplasms/genetics , Giant Cell Tumor of Bone/genetics , Humans , Osteitis Deformans/genetics
7.
J Bone Miner Res ; 35(10): 1974-1980, 2020 10.
Article En | MEDLINE | ID: mdl-32106343

Neoplastic transformation is a rare but serious complication of Paget's disease of bone (PDB), occurring in fewer than 1% of individuals with polyostotic disease. Their prognosis is poor, with less than 50% surviving 5 years. In 2016, the genetic alteration of giant cell tumor (GCT) complicating PDB was identified as a founder germline mutation (P937R) in the ZNF687 gene. However, the study population was exclusively of Italian descent, and patients of different ethnic origins were not studied. To fill this gap, herein we performed mutation analysis of ZNF687 in a GCT in the pelvis of a 45-year-old black American woman with polyostotic PDB. The P937R mutation in ZNF687 was found in her tumor but, as expected, the ancestral haplotype that characterizes the Italian GCT/PDB patients was not found. Furthermore, we identified two additional Italian GCT/PDB patients with this ZNF687 mutation, now constituting a cohort of 18 GCT/PDB cases, all harboring the identical mutation. We also searched for ZNF687 mutations in a unique collection of tumor tissues derived from Italian PDB patients, including 28 osteosarcomas (OS/PDB), 8 undifferentiated sarcomas (SRC/PDB), 1 fibrosarcoma (FS/PDB), and 1 chondrosarcoma (CS/PDB). We identified the P937R mutation in one SRC/PDB and a different ZNF687 mutation (R331W) in 1 of 28 pagetic osteosarcomas. Thus, whereas GCT/PDB pathogenesis globally seems to involve the P937R mutation in ZNF687, other neoplasms associated with PDB seem to be less related to mutations in this gene. Finally, we identified the G34W mutation in the H3F3A gene in the maxillary tumor masses of two PDB patients, defining them as conventional GCT rather than GCT/PDB. Thus, combined molecular analysis of H3F3A and ZNF687 is essential to clarify the origin and diagnosis of tumors in PDB. © 2020 American Society for Bone and Mineral Research.


Bone Neoplasms , DNA-Binding Proteins/genetics , Osteitis Deformans , Bone Neoplasms/genetics , Female , Humans , Italy , Middle Aged , Mutation , Osteitis Deformans/genetics
8.
J Bone Miner Res ; 35(8): 1387-1398, 2020 08.
Article En | MEDLINE | ID: mdl-31991009

Paget's disease of bone (PDB) is a late-onset disorder frequently caused by mutations in the SQSTM1 gene, leading to hyperactive osteoclasts and resulting in bone pain, deformities, and fractures. However, some more severe forms of PDB-negative for SQSTM1 mutations-have been described, in which the disease degenerates into bone cancers and shows a poor prognosis. Osteosarcoma is the most frequent and aggressive tumor arising in PDB (OS/PDB), with a 5-year survival rate almost nil, but the underlying molecular mechanism is unknown. Here, we investigated an extended pedigree with 11 individuals affected by early onset and polyostotic PDB, mainly interesting the appendicular skeleton. Interestingly, three members also developed secondary osteosarcoma. We performed exome sequencing and identified a 4-bp deletion in the PFN1 gene, resulting in the degradation of the mutant protein. Copy number screening on 218 PDB individuals of our biobank disclosed that four of them (~2%) carry a germline heterozygous deletion of PFN1. The identification of these subjects, who exhibit a particularly severe form of disease, emphasizes the diagnostic value of this genetic screening to identify PDB individuals predisposed to develop osteosarcoma. In fact, we detected allelic imbalance at PFN1 locus also in 8 of 14 (57%) sporadic OS/PDB, further proving its causative role. in vitro experiments also confirmed PFN1 involvement in this form of PDB. Indeed, CRISPR-Cas9-mediated Pfn1 knockout in pre-osteoclasts resulted into enhanced osteoclast differentiation and resorption, with the formation of large osteoclasts never described before in PDB. In addition, Pfn1 lacking pre-osteoblasts lost their differentiation capability and failed to efficiently mineralize bone. Moreover, they acquired features of malignant transformation, including loss of focal adhesions and increased invasion ability. In conclusion, these findings disclose PFN1 haploinsufficiency as the pathological mechanism in OS/PDB. © 2020 American Society for Bone and Mineral Research.


Osteitis Deformans , Osteosarcoma , Profilins/genetics , Bone and Bones , Humans , Osteitis Deformans/genetics , Osteosarcoma/genetics , Pedigree , Sequestosome-1 Protein/genetics
9.
BMC Cancer ; 18(1): 358, 2018 04 02.
Article En | MEDLINE | ID: mdl-29609578

BACKGROUND: Giant Cell Tumour of Bone (GCT) is a locally aggressive primary bone tumour that usually occurs at the epiphyses of the long bones of the appendicular skeleton with a tendency to recurrence. Recurrent somatic H3F3A mutations have been described in 92% of GCT cases. GCTs involving the Clivus are extremely rare lesions and less than 15 cases are described in the literature. They represent a surgery challenge and are easily misdiagnosed. Our aim was to reveal if the genetic bases underlying Clival GCTs were the same of GCTs of long bones to improve the diagnosis and treatment. METHODS: The targeted somatic sequencing of GCT-related genes (H3F3A, H3F3B, IDH1, IDH2 and ZNF687) was performed on Clival GCT biopsies of two different cases. Histological analyses on the same tissues were used to detect the neoplastic population and its expression profile. RESULTS: Sanger sequencing revealed that both patients were positive for the p.Gly34Trp mutation in the H3F3A gene. Immunofluorescence assay using monoclonal antibody, specifically detecting the mutant H3.3, highlighted that the mutation only involved the mononuclear cell population and not the multinucleated giant cells. Moreover, immunohistochemistry assay showed that RANKL was highly expressed by the stromal cells within Clival GCT, mimicking what happens in GCT of the long bones. In addition, systematic literature review allowed us to generate a histology-based diagnostic algorithm of the most common clival lesions. CONCLUSIONS: We conclude that the Clival GCT is genetically defined by somatic mutation in the H3F3A gene, linking it to the GCT of long bones. The similarity with GCTs of long bones let us to hypothesize the utility of Denosumab therapy (already effective for GCTs) in these surgically challenging cases. Moreover, H3F3A genetic screening can be combined to the histological analysis to differentiate GCTs from morphologically similar giant cell-rich sarcomas, while the histological diagnostic algorithm could help the differential diagnosis of other clival lesions.


Biomarkers, Tumor , Cranial Fossa, Posterior/pathology , Giant Cell Tumor of Bone/diagnosis , Giant Cell Tumor of Bone/genetics , Histones/genetics , Mutation , Algorithms , Biopsy , Cranial Fossa, Posterior/metabolism , DNA Mutational Analysis , Diagnosis, Differential , Female , Giant Cell Tumor of Bone/metabolism , Histones/metabolism , Humans , Immunohistochemistry , Magnetic Resonance Imaging , Middle Aged , RANK Ligand/genetics , RANK Ligand/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Tomography, X-Ray Computed
10.
Oncotarget ; 8(38): 63121-63131, 2017 09 08.
Article En | MEDLINE | ID: mdl-28968976

Giant Cell Tumor of Bone (GCT) is a tumor characterized by neoplastic mesenchymal stromal cells and a high number of osteoclast-like multinucleated giant cells. Rarely, GCT could arise in bones affected by Paget's disease of bone (GCT/PDB). Although it is already known that GCT/PDB and GCT show a different clinical profile regarding the age-onset and skeletal localization, our deep clinical comparison between the two GCT/PDB and GCT cohorts, permitted us to identify additional differences (e.g. focality, ALP serum levels, the 5-year survival rate and the familial recurrence), strongly suggesting a different molecular basis. Accordingly, driver somatic mutations in H3F3A and IDH2 were described in GCT patients, while we recently identified a germline mutation in ZNF687 as the genetic defect of GCT/PDB patients. Here, we detected H3F3A mutations in our GCT cohort, confirming its molecular screening as the elected diagnostic tool, and then we excluded the two-hit in H3F3A and IDH2 as the trigger event for the GCT/PDB development. Importantly, we also identified an alternative biochemical profile with GCT/PDB not exhibiting the up-regulation of the GCT marker FGFR2IIIc. Finally, our histological analysis also showed a different appearance of the two forms of the tumor, with GCT/PDB showing a higher number of osteoclast-like giant cells (twice), with an abnormal number of nuclei per cell, corroborating its different behaviour in terms of neoplastic properties. We demonstrated that the distinct clinical features of pagetic and conventional GCT are associated with different genetic background, resulting in a specific biochemical and histological behaviour of the tumour.

...