Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(16): e2310499, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38100276

RESUMEN

Today, ≈20% of the electric consumption is devoted to refrigeration; while, ≈50% of the final energy is dedicated to heating applications. In this scenario, many cooling devices and heat-pumps are transitioning toward the use of CO2 as an eco-friendly refrigerant, favoring carbon circular economy. Nevertheless, CO2 still has some limitations, such as large operating pressures (70-150 bar) and a critical point at 31 °C, which compromises efficiency and increases technological complexity. Very recently, an innovative breathing-caloric mechanism in the MIL-53(Al) compound is reported, which implies gas adsorption under CO2 pressurization boosted by structural transitions and which overcomes the limitations of stand-alone CO2. Here, the breathing-caloric-like effects of MOF-508b are reported, surpassing by 40% those of MIL-53(Al). Moreover, the first thermometry device operating at room temperature and under the application of only 26 bar of CO2 is presented. Under those conditions, this material presents values of ΔT ≈ 30 K, reaching heating temperatures of 56 °C and cooling temperatures of -10 °C, which are already useful for space heating, air-conditioning, food refrigeration, and freezing applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122198, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36502746

RESUMEN

We present a temperature-dependent Raman scattering study of a [(CH3)3NH][Mn(N3)3] hybrid organic-inorganic azide-perovskite, in which we have analysed in detail the wavenumber and full width at half-maximum (FWHM) of lattice modes and internal modes of the NC3 skeleton, N3- and CH3 molecular groups. In general, the modes exhibited unusual behaviour during the phase transitions, including discontinuity in the phonon wavenumber, bandwidth, and unconventional shifts upon temperature variation. Spectral features on heating reveal the absence of significant distortions in the NC3 skeleton and a relatively restricted order-disorder process of the TrMA+ cations. On the other hand, linewidth anomalies of the δNC3 and νasNC3 modes have been attributed to the molecular dynamics of encapsulated cations. The unconventional blue shift of the symmetric stretching modes of azide ligands indicates the weakening of the intermolecular interactions between the TrMA+ cations and azido-bridges, and the strengthening of the intramolecular bonds. Additionally, we have used differential scanning calorimetry to confirm the subtle monoclinic to monoclinic (P21/c â†’ C2/c) phase transition at around 330 K; and the phase transition to trigonal structure (R3¯m) above 359 K, whose associated entropy variation turns to be |ΔS| ∼ 22.3 J·kg-1 K-1 and displays a barocaloric (BC) tunability |δTt/δP| ∼ 3.17 K kbar-1, according to our estimations using the Clausius-Clapeyron method. Although the obtained values of entropy change and BC tunability are very close to those reported on formate-perovskites and other important caloric materials, those parameters are much lower than the giant entropy change of ∼80 Jkg-1 K-1 and large BC tunability ∼12 K kbar-1 observed for the analogue azide-perovskite [(CH3)4N][Mn(N3)]3 (TMAMnN3). Very interestingly, our combined study shed light to understand such different behaviour, as they reveal that the hydrogen bonds created between the TrMA+ cations and the framework prevent an extensive order-disorder process that is needed to obtain large entropy changes and large BC coefficients as it occurs in the case of related azide-perovskites with no H-bonds between the A cations (for example TMA) and the framework.

3.
Chem Mater ; 34(7): 3323-3332, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35444364

RESUMEN

In this work, "breathing-caloric" effect is introduced as a new term to define very large thermal changes that arise from the combination of structural changes and gas adsorption processes occurring during breathing transitions. In regard to cooling and heating applications, this innovative caloric effect appears under very low working pressures and in a wide operating temperature range. This phenomenon, whose origin is analyzed in depth, is observed and reported here for the first time in the porous hybrid organic-inorganic MIL-53(Al) material. This MOF compound exhibits colossal thermal changes of ΔS ∼ 311 J K-1 kg-1 and ΔH ∼ 93 kJ kg-1 at room temperature (298 K) and under only 16 bar, pressure which is similar to that of common gas refrigerants at the same operating temperature (for instance, p(CO2) ∼ 64 bar and p(R134a) ∼ 6 bar) and noticeably lower than p > 1000 bar of most solid barocaloric materials. Furthermore, MIL-53(Al) can operate in a very wide temperature range from 333 K down to 254 K, matching the operating requirements of most HVAC systems. Therefore, these findings offer new eco-friendly alternatives to the current refrigeration systems that can be easily adapted to existing technologies and open the door to the innovation of future cooling systems yet to be developed.

4.
Molecules ; 25(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081238

RESUMEN

Temperature-dependent Raman scattering and differential scanning calorimetry were applied to the study of the hybrid organic-inorganic azide-perovskite [(CH3)4N][Cd(N3)3], a compound with multiple structural phase transitions as a function of temperature. A significant entropy variation was observed associated to such phase transitions, |∆S| ~ 62.09 J·kg-1 K-1, together with both a positive high barocaloric (BC) coefficient |δTt/δP| ~ 12.39 K kbar-1 and an inverse barocaloric (BC) coefficient |δTt/δP| ~ -6.52 kbar-1, features that render this compound interesting for barocaloric applications. As for the obtained Raman spectra, they revealed that molecular vibrations associated to the NC4, N3- and CH3 molecular groups exhibit clear anomalies during the phase transitions, which include splits and discontinuity in the phonon wavenumber and lifetime. Furthermore, variation of the TMA+ and N3- modes with temperature revealed that while some modes follow the conventional red shift upon heating, others exhibit an unconventional blue shift, a result which was related to the weakening of the intermolecular interactions between the TMA (tetramethylammonium) cations and the azide ligands and the concomitant strengthening of the intramolecular bondings. Therefore, these studies show that Raman spectroscopy is a powerful tool to gain information about phase transitions, structures and intermolecular interactions between the A-cation and the framework, even in complex hybrid organic-inorganic perovskites with highly disordered phases.


Asunto(s)
Azidas/química , Compuestos de Calcio/química , Rastreo Diferencial de Calorimetría/métodos , Óxidos/química , Espectrometría Raman/métodos , Titanio/química , Cadmio/química , Cationes/química , Transición de Fase , Temperatura , Vibración
5.
Inorg Chem ; 57(6): 3215-3222, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29509008

RESUMEN

We have prepared two new lead halides with the novel general formula of DMA7Pb4X15 (DMA = [(CH3)2NH2]+ and X = Cl- or Br-) by using an easy route under mild conditions at room temperature. These compounds exhibit an unprecedented crystal structure, are formed by layers of distorted [PbX6] octahedra, which share corners and faces, and contain intercalated DMA cations. Very interestingly, they display dielectric transitions, which are related to a partial order-disorder process of the DMA cations between 160 and 260 K. Additionally, these new layered hybrids exhibit a broadband photoluminiscent emission, which is related to the structural distortions of the [PbX6] octahedra. These findings not only open up large possibilities for future optoelectronic applications of these materials, but they also offer a novel playground for an easy modulation of electrical and optical properties of hybrid organic-inorganic materials. We anticipate that this novel A7Pb4X15 formula can be adequate to tune the family of the hybrid lead halides using other alkylammonium cations, such as methylammonium, formamidinium, or ethylammonium, to improve their photoelectronic properties.

6.
Chemistry ; 22(23): 7863-70, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27072487

RESUMEN

The perovskite azido compound [(CH3 )4 N][Mn(N3 )3 ], which undergoes a first-order phase change at Tt =310 K with an associated magnetic bistability, was revisited in the search for additional ferroic orders. The driving force for such structural transition is multifold and involves a peculiar cooperative rotation of the [MnN6 ] octahedral as well as order/disorder and off-center shifts of the [(CH3 )4 N](+) cations and bridging azide ligands, which also bend and change their coordination mode. According to DFT calculations the latter two give rise to the appearance of electric dipoles in the low-temperature (LT) polymorph, the polarization of which nevertheless cancels out due to their antiparallel alignment in the crystal. The conversion of this antiferroelectric phase to the paraelectric phase could be responsible for the experimental dielectric anomaly detected at 310 K. Additionally, the structural change involves a ferroelastic phase transition, whereby the LT polymorph exhibits an unusual and anisotropic thermal behavior. Hence, [(CH3 )4 N][Mn(N3 )3 ] is a singular material in which three ferroic orders coexist even above room temperature.

7.
J Am Chem Soc ; 138(4): 1122-5, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26717023

RESUMEN

We present the first example of magnetic ordering-induced multiferroic behavior in a metal-organic framework magnet. This compound is [CH3NH3][Co(HCOO)3] with a perovskite-like structure. The A-site [CH3NH3](+) cation strongly distorts the framework, allowing anisotropic magnetic and electric behavior and coupling between them to occur. This material is a spin canted antiferromagnet below 15.9 K with a weak ferromagnetic component attributable to Dzyaloshinskii-Moriya (DM) interactions and experiences a discontinuous hysteretic magnetic-field-induced switching along [010] and a more continuous hysteresis along [101]. Coupling between the magnetic and electric order is resolved when the field is applied along this [101]: a spin rearrangement occurs at a critical magnetic field in the ac plane that induces a change in the electric polarization along [101] and [10-1]. The electric polarization exhibits an unusual memory effect, as it remembers the direction of the previous two magnetic-field pulses applied. The data are consistent with an inverse-DM mechanism for multiferroic behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA