Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(2): pgae008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390215

RESUMEN

Linking individual and stand-level dynamics during forest development reveals a scaling relationship between mean tree size and tree density in forest stands, which integrates forest structure and function. However, the nature of this so-called scaling law and its variation across broad spatial scales remain unquantified, and its linkage with forest demographic processes and carbon dynamics remains elusive. In this study, we develop a theoretical framework and compile a broad-scale dataset of long-term sample forest stands (n = 1,433) from largely undisturbed forests to examine the association of temporal mean tree size vs. density scaling trajectories (slopes) with biomass accumulation rates and the sensitivity of scaling slopes to environmental and demographic drivers. The results empirically demonstrate a large variation of scaling slopes, ranging from -4 to -0.2, across forest stands in tropical, temperate, and boreal forest biomes. Steeper scaling slopes are associated with higher rates of biomass accumulation, resulting from a lower offset of forest growth by biomass loss from mortality. In North America, scaling slopes are positively correlated with forest stand age and rainfall seasonality, thus suggesting a higher rate of biomass accumulation in younger forests with lower rainfall seasonality. These results demonstrate the strong association of the transient mean tree size vs. density scaling trajectories with forest demography and biomass accumulation rates, thus highlighting the potential of leveraging forest structure properties to predict forest demography, carbon fluxes, and dynamics at broad spatial scales.

2.
Nat Ecol Evol ; 6(10): 1423-1437, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35941205

RESUMEN

The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.


Asunto(s)
Biodiversidad , Bosques , Suelo , Árboles
3.
Proc Natl Acad Sci U S A ; 119(19): e2013171119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500110

RESUMEN

Examining the relationship between tree diversity and ecosystem functioning has been a recent focus of forest ecology. Particular emphasis has been given to the impact of tree diversity on productivity and to its potential to mitigate negative global change effects; however, little attention has been paid to tree mortality. This is critical because both tree mortality and productivity underpin forest ecosystem dynamics and therefore forest carbon sequestration. Neglecting tree mortality leaves a large part of the picture undocumented. Here we show that increasingly diverse forest stands have increasingly high mortality probabilities. We found that the most species-rich stands in temperate biomes had mortality probabilities more than sevenfold higher than monospecific stands (∼0.6% year−1 in monospecific stands to 4.0% year−1 in the most species-rich stands) while in boreal stands increases were less pronounced but still significant (∼1.1% year−1 in monospecific stands to 1.8% year−1 in the most species-rich stands). Tree species richness was the third-most-important predictor of mortality in our models in temperate forests and the fifth-most-important predictor in boreal forests. Our results highlight that while the promotion of tree diversity undoubtedly has many positive effects on ecosystem functioning and the services that trees provide to humanity, it remains important to consider all aspects of forest dynamics in order to properly predict the implications of maintaining and promoting tree diversity.


Asunto(s)
Biodiversidad , Ecosistema , Canadá , Bosques , Estados Unidos
4.
Ecol Lett ; 23(1): 79-87, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31631491

RESUMEN

Increases in niche complementarity have been hypothesised to reduce the intensity of interspecific competition within natural forests. In regions currently experiencing potentially enhanced growth under global environmental change, niche complementarity may become even more beneficial. However, few studies have provided direct evidence of this mechanism. Here, we use data from 180 permanent sample plots in Manitoba, Canada, with a full spatial mapping of all stems, to show that complementarity effects on average increased with neighbourhood competition intensity and temporally rising CO2 , warming and water availability. Importantly, complementarity effects increased with both shade tolerance and phylogenetic dissimilarity between the focal tree and its neighbours. Our results provide further evidence that increasing stand functional and phylogenetic diversity can improve individual tree productivity, especially for individuals experiencing intense competition and may offer an avenue to maintain productivity under global environmental change.


Asunto(s)
Biodiversidad , Taiga , Canadá , Bosques , Filogenia
5.
Biol Rev Camb Philos Soc ; 95(1): 167-183, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31625247

RESUMEN

Soil organic carbon (SOC) is a valuable resource for mediating global climate change and securing food production. Despite an alarming rate of global plant diversity loss, uncertainties concerning the effects of plant diversity on SOC remain, because plant diversity not only stimulates litter inputs via increased productivity, thus enhancing SOC, but also stimulates microbial respiration, thus reducing SOC. By analysing 1001 paired observations of plant mixtures and corresponding monocultures from 121 publications, we show that both SOC content and stock are on average 5 and 8% higher in species mixtures than in monocultures. These positive mixture effects increase over time and are more pronounced in deeper soils. Microbial biomass carbon, an indicator of SOC release and formation, also increases, but the proportion of microbial biomass carbon in SOC is lower in mixtures. Moreover, these species-mixture effects are consistent across forest, grassland, and cropland systems and are independent of background climates. Our results indicate that converting 50% of global forests from mixtures to monocultures would release an average of 2.70 Pg C from soil annually over a period of 20 years: about 30% of global annual fossil-fuel emissions. Our study highlights the importance of plant diversity preservation for the maintenance of soil carbon sequestration in discussions of global climate change policy.

6.
Ecol Lett ; 22(6): 999-1008, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30920143

RESUMEN

Climate and other global environmental changes are major threats to ecosystem functioning and biodiversity. However, the importance of plant diversity in mitigating the responses of functioning of natural ecosystems to long-term environmental change remains unclear. Using inventory data of boreal forests of western Canada from 1958 to 2011, we found that aboveground biomass growth increased over time in species-rich forests but decreased in species-poor forests, and importantly, aboveground biomass loss from tree mortality was smaller in species-rich than species-poor forests. A further analysis indicated that growth of species-rich (but not species-poor) forests was statistically positively associated with rising CO2 , and that mortality in species-poor forests increased more as climate moisture availability decreased than it did in species-rich forests. In contrast, growth decreased and mortality increased as the climate warmed regardless of species diversity. Our results suggest that promoting high tree diversity may help reduce the climate and environmental change vulnerability of boreal forests.


Asunto(s)
Cambio Climático , Bosques , Taiga , Canadá , Árboles
7.
Glob Chang Biol ; 24(3): 1308-1320, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29028280

RESUMEN

Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with different soil depths, vegetation types, and climate gradients remains poorly understood. Based on 2,736 observations along soil profiles of 0-150 cm depth from 1955 to 2016, we evaluated the temporal changes in soil C-N-P stoichiometry across subtropical China, where soils are P-impoverished, with diverse vegetation, soil, and parent material types and a wide range of climate gradients. We found a significant overall increase in soil total C concentration and a decrease in soil total P concentration, resulting in increasing soil C:P and N:P ratios during the past 60 years across all soil depths. Although average soil N concentration did not change, soil C:N increased in topsoil while decreasing in deeper soil. The temporal trends in soil C-N-P stoichiometry differed among vegetation, soil, parent material types, and spatial climate variations, with significantly increased C:P and N:P ratios for evergreen broadleaf forest and highly weathered Ultisols, and more pronounced temporal changes in soil C:N, N:P, and C:P ratios at low elevations. Our sensitivity analysis suggests that the temporal changes in soil stoichiometry resulted from elevated N deposition, rising atmospheric CO2 concentration and regional warming. Our findings revealed that the responses of soil C-N-P and stoichiometry to long-term global changes have occurred across the whole soil depth in subtropical China and the magnitudes of the changes in soil stoichiometry are dependent on vegetation types, soil types, and spatial climate variations.


Asunto(s)
Carbono/química , Ecosistema , Nitrógeno/química , Fósforo/química , Suelo , China , Clima , Factores de Tiempo
8.
Biol Rev Camb Philos Soc ; 93(1): 439-456, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28695682

RESUMEN

Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning.


Asunto(s)
Biodiversidad , Cambio Climático , Bosques , Modelos Biológicos , Plantas/metabolismo , Factores de Tiempo
9.
Glob Chang Biol ; 23(2): 857-866, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27465312

RESUMEN

Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late-successional conifers to early-successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age-dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age-dependent succession, the relative abundances of early-successional deciduous broadleaves and early-successional conifers have increased at the expense of late-successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO2 promoted early-successional conifers and deciduous broadleaves, and warming increased early-successional conifers at the expense of late-successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO2 and warming will continue in the 21st century.


Asunto(s)
Cambio Climático , Bosques , Taiga , Canadá , Árboles
10.
Science ; 354(6309)2016 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-27738143

RESUMEN

The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Bosques , Árboles/fisiología , Cambio Climático , Extinción Biológica
11.
Ecol Lett ; 19(9): 1150-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27465040

RESUMEN

The impacts of climate change on forest net biomass change are poorly understood but critical for predicting forest's contribution to the global carbon cycle. Recent studies show climate change-associated net biomass declines in mature forest plots. The representativeness of these plots for regional forests, however, remains uncertain because we lack an assessment of whether climate change impacts differ with forest age. Using data from plots of varying ages from 17 to 210 years, monitored from 1958 to 2011 in western Canada, we found that climate change has little effect on net biomass change in forests ≤ 40 years of age due to increased growth offsetting increased mortality, but has led to large decreases in older forests due to increased mortality accompanying little growth gain. Our analysis highlights the need to incorporate forest age profiles in examining past and projecting future forest responses to climate change.


Asunto(s)
Biomasa , Cambio Climático , Taiga , Árboles/fisiología , Alberta , Saskatchewan , Estaciones del Año , Árboles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...