Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomol NMR Assign ; 17(2): 309-314, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37861971

RESUMEN

Protein p53 is mostly known for playing a key role in tumour suppression, and mutations in the p53 gene are amongst the most frequent genomic events accompanying oncogenic transformation. Continuous research is conducted to target disordered proteins/protein regions for cancer therapy, for which atomic level information is also necessary. The disordered N-terminal part of p53 contains the transactivation and the proline-rich domains-which besides being abundant in proline residues-contains repetitive Pro-Ala motifs. NMR assignment of such repetitive, proline-rich regions is challenging due to the lack of amide protons in the 1HN-detected approaches, as well as due to the small chemical shift dispersion. In the present study we perform the full assignment of the p531-100 region by applying a combination of 1HN- and 1Hα-detected NMR experiments. We also show the increased information content when using real-time homo- and heteronuclear decoupled acquisition schemes. On the other hand, we highlight the presence of minor proline species, and using Pro-selective experiments we determine the corresponding cis or trans conformation. Secondary chemical shifts for (Cα-Cß) atoms indicate the disordered nature of this region, with expected helical tendency for the TAD1 region. As the role of the proline-rich domain is yet not well understood our results can contribute to further successful investigations.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Protones , Resonancia Magnética Nuclear Biomolecular/métodos , Prolina/química
2.
Front Biosci (Landmark Ed) ; 28(6): 127, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37395034

RESUMEN

BACKGROUND: Intrinsically disordered proteins and protein regions (IDPs/IDRs) are important in diverse biological processes. Lacking a stable secondary structure, they display an ensemble of conformations. One factor contributing to this conformational heterogeneity is the proline cis/trans isomerization. The knowledge and value of a given cis/trans proline ratio are paramount, as the different conformational states can be responsible for different biological functions. Nuclear Magnetic Resonance (NMR) spectroscopy is the only method to characterize the two co-existing isomers on an atomic level, and only a few works report on these data. METHODS: After collecting the available experimental literature findings, we conducted a statistical analysis regarding the influence of the neighboring amino acid types (i ± 4 regions) on forming a cis-Pro isomer. Based on this, several regularities were formulated. NMR spectroscopy was then used to define the cis-Pro content on model peptides and desired point mutations. RESULTS: Analysis of NMR spectra prove the dependence of the cis-Pro content on the type of the neighboring amino acid-with special attention on aromatic and positively charged sidechains. CONCLUSIONS: Our results may benefit the design of protein regions with a given cis-Pro content, and contribute to a better understanding of the roles and functions of IDPs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Isomerismo , Proteínas Intrínsecamente Desordenadas/genética , Prolina/química , Prolina/metabolismo , Péptidos , Espectroscopía de Resonancia Magnética , Conformación Proteica
3.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682829

RESUMEN

The 96-residue-long loop of EZH2 is proposed to play a role in the interaction with long non-coding RNAs (lncRNAs) and to contribute to EZH2 recruitment to the chromatin. However, molecular details of RNA recognition have not been described so far. Cellular studies have suggested that phosphorylation of the Thr345 residue localized in this loop influences RNA binding; however, no mechanistic explanation has been offered. To address these issues, a systematic NMR study was performed. As the 1HN-detected NMR approach presents many challenges under physiological conditions, our earlier developed, as well as improved, 1Hα-detected experiments were used. As a result of the successful resonance assignment, the obtained chemical shift values indicate the highly disordered nature of the EZH2 loop, with some nascent helical tendency in the Ser407-Ser412 region. Further investigations conducted on the phosphomimetic mutant EZH2T345D showed that the mutation has only a local effect, and that the loop remains disordered. On the other hand, the mutation influences the cis/trans Pro346 equilibrium. Interactions of both the wild-type and the phosphomimetic mutant with the lncRNA HOTAIR140 (1-140 nt) highlight that the Thr367-Ser375 region is affected. This segment does not resemble any of the previously reported RNA-binding motifs, therefore the identified binding region is unique. As no structural changes occur in the EZH2 loop upon RNA binding, we can consider the protein-RNA interaction as a "fuzzy" complex.


Asunto(s)
ARN Largo no Codificante , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Anal Chem ; 94(22): 7885-7891, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35617314

RESUMEN

Protein unfolding and denaturation are main issues in biochemical and pharmaceutical research. Using a global parameter, the translational diffusion coefficient D, folded, unfolded, and intrinsically disordered proteins of a given molar mass M can be distinguished based on their distinct hydrodynamic properties. For broader applications, we provide generalized, PFG-NMR-based empirical D-M relations validated at different temperatures and ready to use with the corresponding corrections in different media. We demonstrate that these relations enable a more accurate molecular mass determination and show fewer potential errors than those of the common methods based on small-molecular diffusion standards. We monitor unfolding of three model proteins using 8 M urea and dimethyl sulfoxide (DMSO)-water mixtures as denaturing agents, highlighting the effect of disulfide bonds. Denaturation in 8 M urea is pH-dependent; in addition, for proteins with highly stable disulfide bonds, a reducing agent (TCEP) is required to achieve complete unfolding. Regarding the effect of local parameters, we show that at low DMSO concentrations─common conditions in pharmaceutical binding studies─the PFG-NMR-derived global parameters are not significantly affected. Still, the atomic environments can change, and the bound solvent molecule can inhibit the binding of a partner molecule. Using proteins with natural isotopic abundance, this effect can be proven by fast 1H-15N 2D correlation spectra. Our results enable fast and easy estimation of protein molecular mass and the degree of folding in various media; moreover, the effect of the cosolvent on the atomic-level structure can be traced without the need of isotope labeling.


Asunto(s)
Dimetilsulfóxido , Proteínas , Difusión , Dimetilsulfóxido/química , Disulfuros , Desnaturalización Proteica , Pliegue de Proteína , Proteínas/química , Termodinámica , Urea
5.
Angew Chem Int Ed Engl ; 61(1): e202108361, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34585830

RESUMEN

It is important to identify proline cis/trans isomers that appear in several regulatory mechanisms of proteins, and to characterize minor species that are present due to the conformational heterogeneity in intrinsically disordered proteins (IDPs). To obtain residue level information on these mobile systems we introduce two 1 Hα -detected, proline selective, real-time homodecoupled NMR experiments and analyze the proline abundant transactivation domain of p53. The measurements are sensitive enough to identify minor conformers present in 4-15 % amounts; moreover, we show the consequences of CK2 phosphorylation on the cis/trans-proline equilibrium. Using our results and available literature data we perform a statistical analysis on how the amino acid type effects the cis/trans-proline distribution. The methods are applicable under physiological conditions, they can contribute to find key proline isomers in proteins, and statistical analysis results may help in amino acid sequence optimization for biotechnological purposes.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular , Prolina/química , Proteoma/química , Conformación Molecular , Fosforilación , Protones , Estereoisomerismo
6.
ACS Omega ; 6(50): 34470-34484, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34963932

RESUMEN

The need for novel drug delivery peptides is an important issue of the modern pharmaceutical research. Here, we test K-rich peptides from plant dehydrin ERD14 (ERD-A, ERD-B, and ERD-C) and the C-terminal CPP-resembling region of S100A4 (S100) using the 5(6)-carboxyfluorescein (Cf) tag at the N-terminus. Via a combined pH-dependent NMR and fluorescence study, we analyze the effect of the Cf conjugation/modification on the structural behavior, separately investigating the (5)-Cf and (6)-Cf forms. Flow cytometry results show that all peptides internalize; however, there is a slight difference between the cellular internalization of (5)- and (6)-Cf-peptides. We indicate the possible importance of residues with an aromatic sidechain and proline. We prove that ERD-A localizes mostly in the cytosol, ERD-B and S100 have partial colocalization with lysosomal staining, and ERD-C mainly localizes within vesicle-like compartments, while the uptake mechanism mainly occurs through energy-dependent paths.

7.
Chembiochem ; 21(21): 3087-3095, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32511842

RESUMEN

Conformationally flexible protein complexes represent a major challenge for structural and dynamical studies. We present herein a method based on a hybrid NMR/MD approach to characterize the complex formed between the disordered p53TAD1-60 and the metastasis-associated S100A4. Disorder-to-order transitions of both TAD1 and TAD2 subdomains upon interaction is detected. Still, p53TAD1-60 remains highly flexible in the bound form, with residues L26, M40, and W53 being anchored to identical hydrophobic pockets of the S100A4 monomer chains. In the resulting "fuzzy" complex, the clamp-like binding of p53TAD1-60 relies on specific hydrophobic anchors and on the existence of extended flexible segments. Our results demonstrate that structural and dynamical NMR parameters (cumulative Δδ, SSP, temperature coefficients, relaxation time, hetNOE) combined with MD simulations can be used to build a structural model even if, due to high flexibility, the classical solution structure calculation is not possible.


Asunto(s)
Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Proteína de Unión al Calcio S100A4/química , Proteína p53 Supresora de Tumor/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Proteína de Unión al Calcio S100A4/genética , Proteína p53 Supresora de Tumor/genética
8.
Q Rev Biophys ; 53: e5, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32115014

RESUMEN

Here it is demonstrated how some anionic food additives commonly used in our diet, such as tartrazine (TZ), bind to DHVAR4, an antimicrobial peptide (AMP) derived from oral host defense peptides, resulting in significantly fostered toxic activity against both Gram-positive and Gram-negative bacteria, but not against mammalian cells. Biophysical studies on the DHVAR4-TZ interaction indicate that initially large, positively charged aggregates are formed, but in the presence of lipid bilayers, they rather associate with the membrane surface. In contrast to synergistic effects observed for mixed antibacterial compounds, this is a principally different mechanism, where TZ directly acts on the membrane-associated AMP promoting its biologically active helical conformation. Model vesicle studies show that compared to dye-free DHVAR4, peptide-TZ complexes are more prone to form H-bonds with the phosphate ester moiety of the bilayer head-group region resulting in more controlled bilayer fusion mechanism and concerted severe cell damage. AMPs are considered as promising compounds to combat formidable antibiotic-resistant bacterial infections; however, we know very little on their in vivo actions, especially on how they interact with other chemical agents. The current example illustrates how food dyes can modulate AMP activity, which is hoped to inspire improved therapies against microbial infections in the alimentary tract. Results also imply that the structure and function of natural AMPs could be manipulated by small compounds, which may also offer a new strategic concept for the future design of peptide-based antimicrobials.


Asunto(s)
Antibacterianos/química , Membrana Celular/metabolismo , Colorantes de Alimentos/química , Histatinas/química , Péptidos/química , Animales , Transporte Biológico/efectos de los fármacos , Dicroismo Circular , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Membrana Dobles de Lípidos/química , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Monocitos/efectos de los fármacos , Fosfatos/química , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier , Streptococcus pneumoniae/efectos de los fármacos
9.
J Mol Biol ; 431(3): 557-575, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30543823

RESUMEN

Reversible serine proteinase inhibitors comprise 18 unrelated families. Each family has a distinct representative structure but contains a surface loop that adopts the same, canonical conformation in the enzyme-inhibitor complex. The Laskowski mechanism universally applies for the action of all canonical inhibitors independent of their scaffold, but it has two nontrivial extrapolations. Intrascaffolding additivity states that all enzyme-contacting loop residues act independently of each other, while interscaffolding additivity claims that these residues act independently of the scaffold. These theories have great importance for engineering proteinase inhibitors but have not been comprehensively challenged. Therefore, we tested the interscaffolding additivity theory by hard-randomizing all enzyme-contacting canonical loop positions of a Kazal- and a Pacifastin-scaffold inhibitor, displaying the variants on M13 phage, and selecting the libraries on trypsin and chymotrypsin. Directed evolution delivered different patterns on both scaffolds against both enzymes, which contradicts interscaffolding additivity. To quantitatively assess the extent of non-additivity, we measured the affinities of the optimal binding loop variants and their binding loop-swapped versions. While optimal variants have picomolar affinities, swapping the evolved loops results in up to 200,000-fold affinity loss. To decipher the underlying causes, we characterized the stability, overall structure and dynamics of the inhibitors with differential scanning calorimetry, circular dichroism and NMR spectroscopy and molecular dynamic simulations. These studies revealed that the foreign loop destabilizes the lower-stability Pacifastin scaffold, while the higher-stability Kazal scaffold distorts the foreign loop. Our findings disprove interscaffolding additivity and show that loop and scaffold form one integrated unit that needs to be coevolved to provide high-affinity inhibition.


Asunto(s)
Inhibidores de Serina Proteinasa/química , Sitios de Unión , Rastreo Diferencial de Calorimetría/métodos , Quimotripsina/química , Dicroismo Circular/métodos , Humanos , Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Serina Proteasas/química , Tripsina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...