Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 99
1.
Molecules ; 28(21)2023 Nov 04.
Article En | MEDLINE | ID: mdl-37959847

Polyamines participate in the processes of cell growth and development. The degradation branch of their metabolism involves amine oxidases. The oxidation of spermine, spermidine and putrescine releases hydrogen peroxide and the corresponding aminoaldehyde. Polyamine-derived aminoaldehydes have been found to be cytotoxic, and they represent the subject of this review. 3-aminopropanal disrupts the lysosomal membrane and triggers apoptosis or necrosis in the damaged cells. It is implicated in the pathogenesis of cerebral ischemia. Furthermore, 3-aminopropanal yields acrolein through the elimination of ammonia. This reactive aldehyde is also generated by the decomposition of aminoaldehydes produced in the reaction of serum amine oxidase with spermidine or spermine. In addition, acrolein is a common environmental pollutant. It causes covalent modifications of proteins, including carbonylation, the production of Michael-type adducts and cross-linking, and it has been associated with inflammation-related diseases. APAL and acrolein are detoxified by aldehyde dehydrogenases and other mechanisms. High-performance liquid chromatography, immunochemistry and mass spectrometry have been largely used to analyze the presence of polyamine-derived aminoaldehydes and protein modifications elicited by their effect. However, the main and still open challenge is to find clues for discovering clear linkages between aldehyde-induced modifications of specific proteins and the development of various diseases.


Acrolein , Polyamines , Acrolein/pharmacology , Spermidine/pharmacology , Spermine/pharmacology , Aldehydes/pharmacology
2.
Nat Commun ; 14(1): 2728, 2023 05 11.
Article En | MEDLINE | ID: mdl-37169746

The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.


Aryl Hydrocarbon Receptor Nuclear Translocator , Receptors, Aryl Hydrocarbon , Skin , Animals , Female , Mice , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Cytochrome P-450 CYP1A1/genetics , Ligands , Promoter Regions, Genetic , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Skin/metabolism , Skin/radiation effects , Ultraviolet Rays/adverse effects
3.
Front Vet Sci ; 10: 1116661, 2023.
Article En | MEDLINE | ID: mdl-37056230

Bovine papillomavirus type 1 L1 protein was produced in a baculovirus expression system and purified as virus-like particles (VLPs) by affinity chromatography using lectins. The morphological integrity of VLPs was confirmed by electron microscopy. Differences between the two detected variants were deciphered by mass spectrometry of peptides (MALDI-TOF). Mice were immunized with purified VLPs in doses of 10, 25, or 50 µg in combination with 1% saponin and 15% alhydrogel per dose as adjuvants. Analysis of the humoral immune response revealed increased levels of specific antibodies detected 3 weeks after the first immunization in all groups of animals. This was further significantly increased by the booster applied 3 weeks after the first dose, with the best immune response in a group of mice immunized by the largest dose of antigen. BPV1 L1 VLPs purified by affinity chromatography using lectins could be used for prophylactic immunization in veterinary medicine.

4.
Pharmaceutics ; 15(2)2023 Jan 17.
Article En | MEDLINE | ID: mdl-36839630

A series of six heteroleptic copper(II) complexes with 2'-hydroxy-4-(dimethylamino)chalcone (HL) with the composition [Cu(N-N)(L)]NO3 (1-6), where N-N stands for dmbpy = 5,5'-dimethyl-2,2'-bipyridine (1), bphen = 4,7-diphenyl-1,10-phenanthroline (2), dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine (3), nphen = 5-nitro-1,10-phenanthroline (4), bpy = 2,2'-bipyridine, (5), and dpa = 2,2'-dipyridylamine (6), was prepared and thoroughly characterized. The in vitro cytotoxicity screening on eight human cancer cell lines identified complex 2, containing the bulkiest N-donor ligands (bphen) as highly cytotoxic against cancer cells, with IC50 values ranking from 1.0 to 2.3 µM, with good selectivity and low toxicity against healthy human fetal lung fibroblasts MRC-5. The cell-based assays, involving the most effective complex 2 in A2780 cancer cells, revealed its strong pro-apoptotic effects based on the effective activation of caspases 3/7, ROS overproduction, and autophagy in the A2780 cells while not impeding the cell cycle and mitochondrial membrane functions. The cellular uptake studies in A2780 and 22Rv1 cells uncovered no intracellular transport of the cationic complex 2, supporting the hypothesis that the in vitro anticancer effects of complex 2 are based on the combined extrinsic activation of apoptosis and autophagy induction.

5.
Mass Spectrom Rev ; 42(3): 1008-1031, 2023 05.
Article En | MEDLINE | ID: mdl-34549449

Activity assays are indispensable for studying biochemical properties of enzymes. The purposes of measuring activity are wide ranging from a simple detection of the presence of an enzyme to kinetic experiments evaluating the substrate specificity, reaction mechanisms, and susceptibility to inhibitors. Common activity assay methods include spectroscopy, electrochemical sensors, or liquid chromatography coupled with various detection techniques. This review focuses on the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a growing and modern alternative, which offers high speed of analysis, sensitivity, versatility, possibility of automation, and cost-effectiveness. It may reveal reaction intermediates, side products or measure more enzymes at once. The addition of an internal standard or calculating the ratios of the substrate and product peak intensities and areas overcome the inherent inhomogeneous distribution of analyte and matrix in the sample spot, which otherwise results in a poor reproducibility. Examples of the application of MALDI-TOF MS for assaying hydrolases (including peptidases and ß-lactamases for antibiotic resistance tests) and other enzymes are provided. Concluding remarks summarize advantages and challenges coming from the present experience, and draw future perspectives such as a screening of large libraries of chemical compounds for their substrate or inhibitory properties towards enzymes.


Lasers , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Reproducibility of Results , Chromatography, Liquid , Kinetics
6.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article En | MEDLINE | ID: mdl-36362416

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has frequently been applied to the analysis of biomolecules. Its strength resides not only in compound identification but particularly in acquiring molecular profiles providing a high discriminating power. The main advantages include its speed, simplicity, versatility, minimum sample preparation needs, and a relatively high tolerance to salts. Other benefits are represented by the possibility of automation, high throughput, sensitivity, accuracy, and good reproducibility, allowing quantitative studies. This review deals with the prominent use of MALDI-TOF MS profiling in food and beverage analysis ranging from the simple detection of sample constituents to quantifications of marker compounds, quality control, and assessment of product authenticity. This review summarizes relevant discoveries that have been obtained with milk and milk products, edible oils, wine, beer, flour, meat, honey, and other alimentary products. Marker molecules are specified: proteins and peptides for milk, cheeses, flour, meat, wine and beer; triacylglycerols and phospholipids for oils; and low-molecular-weight metabolites for wine, beer and chocolate. Special attention is paid to sample preparation techniques and the combination of spectral profiling and statistical evaluation methods, which is powerful for the differentiation of samples and the sensitive detection of frauds and adulterations.


Cheese , Milk , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Reproducibility of Results , Milk/chemistry , Oils
7.
Eur J Med Chem ; 244: 114831, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36242986

Mycobacterial zinc metalloprotease-1 (Zmp1) is an essential enzyme for intracellular survival and pathogenicity of Mycobacterium tuberculosis. However, the exact mechanism of function of this enzyme remains unclear. This paper examines the effect of novel organic molecules on the inhibition of Zmp1. We followed our previous results and synthesised three libraries of new hydroxamates. All compounds were studied for their inhibitory properties towards a recombinant Zmp1 from Mycobacterium tuberculosis by MALDI-TOF MS. Furthermore, a macrophage infection assay was performed to evaluate intracellular antimycobacterial activity. In the whole-cell assay, no direct activity of synthesised heterocyclic hydroxamates was observed against Mycobacterium tuberculosis and Mycobacterium bovis. No acute cellular toxicity was observed against the murine RAW 264.7 macrophage cell line and human MRC-5 lung fibroblast cell line. However, thiazolidinediones 2 showed the dose-dependent inhibition of intracellular survival of Mycobacterium tuberculosis H37Ra. The inhibition was structure-dependent, with the most active derivative 2f inducing an 83.2% reduction of bacterial survival within the macrophage host cell. The promising biological activity confirmed thiazolidinediones 2 as Zmp1 inhibitors that can be used as tool compounds for further exploration of the role of Zmp1 for in vivo pathogenicity. In the long run, thiazolidinediones 2 show the potential to act as a scaffold for Zmp1 inhibitors to target intracellular Mtb as a novel tuberculosis treatment strategy.


Mycobacterium tuberculosis , Thiazolidinediones , Humans , Mice , Animals , Zinc/metabolism , Metalloproteases/metabolism , Bacterial Proteins , Hydroxamic Acids/pharmacology , Thiazolidinediones/pharmacology
8.
Int J Biol Macromol ; 203: 116-129, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-35063491

This work explores the interaction of 9/10-nitro-oleic acid (NO2-OA) with human serum albumin (HSA). The molecular mechanism of the biological action of NO2-OA is to our knowledge based on a reversible covalent reaction-Michael addition of nucleophilic amino acid residues of proteins. Since HSA is an important fatty acid transporter, a key question is whether NO2-OA can bind covalently or non-covalently to HSA, similarly to oleic acid (OA), which can interact with the FA1-FA7 binding sites of the HSA molecule. 1H NMR studies and competition analysis with OA and the drugs ibuprofen and warfarin were used to investigate a potential non-covalent binding mode. NO2-OA/HSA binding was confirmed to compete with warfarin for FA-7 with significantly higher affinity. NO2-OA competes with ibuprofen for FA-3 and FA-6, however, in contrast to the situation with warfarin, the binding affinities are not significantly different. The described interactions are based exclusively on non-covalent binding. No covalent binding of NO2-OA to HSA was detected by MS/MS. More detailed studies based on MALDI-TOF-MS and Ellman's assay indicated that HSA can be covalently modified in the presence of NO2-OA to a very limited extent. It was also shown that NO2-OA has a higher affinity to HSA than that of OA.


Carrier Proteins , Serum Albumin , Carrier Proteins/metabolism , Humans , Nitro Compounds , Oleic Acid , Oleic Acids , Protein Binding , Serum Albumin/chemistry , Tandem Mass Spectrometry
9.
Plants (Basel) ; 10(10)2021 Oct 05.
Article En | MEDLINE | ID: mdl-34685917

A novel high molecular weight glutenin subunit encoded by the Glu-1B locus was identified in the French genotype Bagou, which we named 1B × 6.5. This subunit differed in SDS-PAGE from well-known 1B × 6 and 1B × 7 subunits, which are also encoded at this locus. Subunit 1B × 6.5 has a theoretical molecular weight of 88,322.83 Da, which is more mobile than 1B × 6 subunit, and isoelectric point (pI) of about 8.7, which is lower than that for 1B × 6 subunit. The specific primers were designed to amplify and sequence 2476 bp of the Glu-1B locus from genotype Bagou. A high level of similarity was found between the sequence encoding 1B × 6.5 and other x-type encoding alleles of this locus.

10.
Front Plant Sci ; 12: 723674, 2021.
Article En | MEDLINE | ID: mdl-34497629

Proteins play a major role in the three-dimensional organization of nuclear genome and its function. While histones arrange DNA into a nucleosome fiber, other proteins contribute to higher-order chromatin structures in interphase nuclei, and mitotic/meiotic chromosomes. Despite the key role of proteins in maintaining genome integrity and transferring hereditary information to daughter cells and progenies, the knowledge about their function remains fragmentary. This is particularly true for the proteins of condensed chromosomes and, in particular, chromosomes of plants. Here, we purified barley mitotic metaphase chromosomes by a flow cytometric sorting and characterized their proteins. Peptides from tryptic protein digests were fractionated either on a cation exchanger or reversed-phase microgradient system before liquid chromatography coupled to tandem mass spectrometry. Chromosomal proteins comprising almost 900 identifications were classified based on a combination of software prediction, available database localization information, sequence homology, and domain representation. A biological context evaluation indicated the presence of several groups of abundant proteins including histones, topoisomerase 2, POLYMERASE 2, condensin subunits, and many proteins with chromatin-related functions. Proteins involved in processes related to DNA replication, transcription, and repair as well as nucleolar proteins were found. We have experimentally validated the presence of FIBRILLARIN 1, one of the nucleolar proteins, on metaphase chromosomes, suggesting that plant chromosomes are coated with proteins during mitosis, similar to those of human and animals. These results improve significantly the knowledge of plant chromosomal proteins and provide a basis for their functional characterization and comparative phylogenetic analyses.

11.
Plant Physiol Biochem ; 166: 459-465, 2021 Sep.
Article En | MEDLINE | ID: mdl-34166972

Terrestrial carnivorous plants of genera Drosera, Dionaea and Nepenthes within the order Caryophyllales employ jasmonates for the induction of digestive processes in their traps. Here, we focused on two aquatic carnivorous plant genera with different trapping mechanism from distinct families and orders: Aldrovanda (Droseraceae, Caryophyllales) with snap-traps and Utricularia (Lentibulariaceae, Lamiales) with suction traps. Using phytohormone analyses and simple biotest, we asked whether the jasmonates are involved in the activation of carnivorous response similar to that known in traps of terrestrial genera of Droseraceae (Drosera, Dionaea). The results showed that Utricularia, in contrast with Aldrovanda, does not use jasmonates for activation of carnivorous response and is the second genus in Lamiales, which has not co-opted jasmonate signalling for botanical carnivory. On the other hand, the nLC-MS/MS analyses revealed that both genera secreted digestive fluid containing cysteine protease homologous to dionain although the mode of its regulation may differ. Whereas in Utricularia the cysteine protease is present constitutively in digestive fluid, it is induced by prey and exogenous application of jasmonic acid in Aldrovanda.


Droseraceae , Lamiales , Carnivorous Plant , Cyclopentanes , Oxylipins , Tandem Mass Spectrometry
12.
Molecules ; 26(6)2021 Mar 17.
Article En | MEDLINE | ID: mdl-33802864

The aim and novelty of this paper are found in assessing the influence of inhibitors and antibiotics on intact cell MALDI-TOF mass spectra of the cyanobacterium Synechococcus sp. UPOC S4 and to check the impact on reliability of identification. Defining the limits of this method is important for its use in biology and applied science. The compounds included inhibitors of respiration, glycolysis, citrate cycle, and proteosynthesis. They were used at 1-10 µM concentrations and different periods of up to 3 weeks. Cells were also grown without inhibitors in a microgravity because of expected strong effects. Mass spectra were evaluated using controls and interpreted in terms of differential peaks and their assignment to protein sequences by mass. Antibiotics, azide, and bromopyruvate had the greatest impact. The spectral patterns were markedly altered after a prolonged incubation at higher concentrations, which precluded identification in the database of reference spectra. The incubation in microgravity showed a similar effect. These differences were evident in dendrograms constructed from the spectral data. Enzyme inhibitors affected the spectra to a smaller extent. This study shows that only a long-term presence of antibiotics and strong metabolic inhibitors in the medium at 10-5 M concentrations hinders the correct identification of cyanobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF).


Anti-Bacterial Agents/toxicity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Synechococcus/chemistry , Synechococcus/drug effects , Antimycin A/analogs & derivatives , Antimycin A/toxicity , Azides/toxicity , Cell Respiration/drug effects , Chloramphenicol/toxicity , Citric Acid Cycle/drug effects , Deoxyglucose/toxicity , Fluoroacetates/toxicity , Glycolysis/drug effects , Malonates/toxicity , Protein Biosynthesis/drug effects , Pyruvates/toxicity , Reproducibility of Results , Streptomycin/toxicity , Synechococcus/isolation & purification , Synechococcus/metabolism , Weightlessness
13.
Protein Expr Purif ; 184: 105891, 2021 08.
Article En | MEDLINE | ID: mdl-33895263

Immunoglobulin A (IgA) proteinase from Clostridium ramosum is the enzyme which cleaves IgA of both subclasses; in contrast, the other bacterial proteinases cleave only IgA1 proteins. Previous reports characterized the activity of proteinase naturally secreted by C. ramosum specific for the normal human serum IgA of IgA1 and IgA2m(1) subclasses and also for secretory IgA (SIgA). Its amino acid sequence was determined, and the recombinant proteinase which cleaved IgA of both subclasses was prepared. Here we report the optimized expression, purification, storage conditions and activity testing against purified human milk SIgA. The recombinant C. ramosum IgA proteinase isolated in the high degree of purity exhibited almost complete cleavage of SIgA of both subclasses. The proteinase remained active upon storage for more than 10 month at -20 °C without substantial loss of enzymatic activity. Purified SIgA fragments are suitable for studies of all antigen-binding and Fc-dependent functions of SIgA involved in the protection against infections with mucosal pathogens.


Bacterial Proteins/chemistry , Firmicutes/enzymology , Immunoglobulin A, Secretory/chemistry , Immunoglobulin Fab Fragments , Immunoglobulin Fc Fragments , Peptide Hydrolases/chemistry , Bacterial Proteins/genetics , Firmicutes/genetics , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/isolation & purification , Peptide Hydrolases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
14.
Plant Physiol Biochem ; 161: 113-121, 2021 Apr.
Article En | MEDLINE | ID: mdl-33581619

The carnivorous pitcher plants of the genus Nepenthes usually attract, capture and digest arthropod prey to obtain mineral nutrients. But few members of the genus have evolved specialized nutrient sequestration strategies to acquire nitrogen from the faeces and urine of mutualistic mammals, which they attract. Because the plants obtain significant amounts of nitrogen in a more available form, we hypothesized that they have relaxed the production of digestive enzymes. If so, species that digest mammal faeces should show fewer digestive enzymes than closely related species that rely on arthropods. We tested this hypothesis by comparing digestive enzymes in 1) Nepenthes hemsleyana, whose pitchers serve as roosts for the mutualistic woolly bat Kerivoula hardwickii, which also defecate inside the pitchers, and 2) the close relative Nepenthes rafflesiana, a typical arthropod capturing species. To investigate the dynamics of aspartic proteases (nepenthesin I and II) and type III and IV chitinases in both species, we conducted qPCR, western blotting, mass spectrometry, and enzyme activity measurements. We found that mRNA in pitcher tissue and enzyme abundance in the digestive fluid is upregulated in both species in response to faeces and insect feeding. Contrary to our initial hypothesis, the final nepenthesin proteolytic activity in the digestive fluid is higher in response to faeces addition than to insect prey irrespective of Nepenthes species. This indicates that faeces can mimic arthropod prey triggering the production of digestive enzymes and N. hemsleyana retained capacity for production of them.


Carnivorous Plant , Magnoliopsida , Animals , Nitrogen , Nutrients , Organic Chemicals , Symbiosis
15.
Int J Biol Macromol ; 164: 1715-1728, 2020 Dec 01.
Article En | MEDLINE | ID: mdl-32758605

The knowledge of protein-nanoparticle interplay is of crucial importance to predict the fate of nanomaterials in biological environments. Indeed, protein corona on nanomaterials is responsible for the physiological response of the organism, influencing cell processes, from transport to accumulation and toxicity. Herein, a comparison using four different proteins reveals the existence of patterned regions of carboxylic groups acting as recognition sites for naked iron oxide nanoparticles. Readily interacting proteins display a distinctive surface distribution of carboxylic groups, recalling the geometric shape of an ellipse. This is morphologically complementary to nanoparticles curvature and compatible with the topography of exposed FeIII sites laying on the nanomaterial surface. The recognition site, absent in non-interacting proteins, promotes the nanoparticle harboring and allows the formation of functional protein coronas. The present work envisages the possibility of predicting the composition and the biological properties of protein corona on metal oxide nanoparticles.


Magnetic Iron Oxide Nanoparticles/chemistry , Protein Corona/chemistry , Ferric Compounds/chemistry , Membrane Proteins/metabolism , Metal Nanoparticles/chemistry , Nanoparticles/metabolism , Protein Binding/physiology , Surface Properties
16.
J Mass Spectrom ; 55(7): e4444, 2020 Jul.
Article En | MEDLINE | ID: mdl-31603573

Cysteine protease from grapevine (Vitis vinifera) belongs to those resistant proteins, which survive the process of vinification and can therefore be detected as wine components. Its amino acid sequence shows a homology to other members of the papain family, but the enzyme has only partially been explored so far. In order to get more biochemical information with the help of mass spectrometry (MS), wine proteins were collected by ultrafiltration and separated by gel permeation chromatography. The purified enzyme surprisingly displayed a high molecular mass value of around 200 kDa, indicating a possible oligomeric status and aggregation, as it entered only negligibly the separating 10% gel during polyacrylamide gel electrophoresis. The isoelectric point (pI) value of 3.6 was determined by chromatofocusing. Matrix-assisted laser desorption/ionization (MALDI)-MS was employed to evaluate the cleavage specificity and usefulness of the isolated cysteine protease in protein and peptide research. A potential applicability could be anticipated from the efficient digestion performance in volatile ammonium formate buffers at pH 3. Common peptides were digested and the resulting products analyzed by MS/MS sequencing. Then, mixtures of protein standards and extracted barley nuclear proteins were processed in the same way. Grape cysteine protease is nonspecific but shows a certain preference for Arg, Lys, and also Leu residues. Compared with papain, it seems not to require fully the presence of a large hydrophobic residue adjacent to that at the cleavage site. The enzyme is suitable for protein research as it produces peptides of a reasonable length in acidic pH.


Cysteine Proteases/metabolism , Peptides/metabolism , Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Vitis/enzymology , Wine/analysis , Cysteine Proteases/chemistry , Cysteine Proteases/isolation & purification , Fruit/enzymology , Hydrogen-Ion Concentration , Peptides/analysis , Proteins/analysis , Substrate Specificity , Tandem Mass Spectrometry
17.
Eur J Med Chem ; 185: 111812, 2020 Jan 01.
Article En | MEDLINE | ID: mdl-31703818

Zinc metalloprotease 1 (Zmp1) is an extracellular enzyme, which has been found essential for the intracellular survival and pathogenesis of Mycobacterium tuberculosis. In this work, we designed and synthesized a series of novel thiazolidinedione-hydroxamates and evaluated in silico their drug-likeness behavior. Then, their inhibitory properties towards a recombinant Zmp1 from Mycobacterium tuberculosis were analyzed by MALDI-TOF MS. Nine of the tested compounds were found to inhibit the enzymatic reaction more effectively than the generic metalloprotease inhibitor phosphoramidon. Furthermore, the synthesized thiazolidinedione-hydroxamate hybrids were evaluated for their in vitro antimycobacterial activity and acute cytotoxicity using whole-cell assays. Results showed that none of the hybrids exhibited acute cytotoxicity against RAW264.7 macrophages. Whereas extracellular antimycobacterial activity was limited, RAW264.7 macrophage infection results showed that a majority of the hybrids inhibited the intracellular growth of Mycobacterium tuberculosis at a concentration of 100 and 10 µM. The thiazolidinedione-hydroxamate compound 2n was considered to be the best candidate of the evaluated library.


Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Hydroxamic Acids/pharmacology , Metalloproteases/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Thiazolidinediones/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Hydroxamic Acids/chemistry , Metalloproteases/metabolism , Molecular Docking Simulation , Molecular Structure , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship , Thiazolidinediones/chemistry
18.
Planta ; 250(1): 229-244, 2019 Jul.
Article En | MEDLINE | ID: mdl-30980246

MAIN CONCLUSION: Isoprenoid and aromatic cytokinins occur in poplar as free compounds and constituents of tRNA, poplar isopentenyltransferases are involved in the production of isoprenoid cytokinins, while biosynthesis of their aromatic counterparts remains unsolved. Cytokinins are phytohormones with a fundamental role in the regulation of plant growth and development. They occur naturally either as isoprenoid or aromatic derivatives, but the latter are quite rare and less studied. Here, the spatial expression of all nine isopentenyl transferase genes of Populus × canadensis cv. Robusta (PcIPTs) as analyzed by RT-qPCR revealed a tissue preference and strong differences in expression levels for the different adenylate and tRNA PcIPTs. Together with their phylogeny, this result suggests a functional diversification for the different PcIPT proteins. Additionally, the majority of PcIPT genes were cloned and expressed in Arabidopsis thaliana under an inducible promoter. The cytokinin levels measured in the Arabidopsis-overexpressing lines as well as their phenotype indicate that the studied adenylate and tRNA PcIPT proteins are functional in vivo and thus will contribute to the cytokinin pool in poplar. We screened the cytokinin content in leaves of 12 Populus species by ultra-high performance-tandem mass spectrometry (UHPLC-MS/MS) and discovered that the capacity to produce not only isoprenoid, but also aromatic cytokinins is widespread amongst the Populus accessions studied. Important for future studies is that the levels of aromatic cytokinins transiently increase after daybreak and are much higher in older plants.


Alkyl and Aryl Transferases/metabolism , Cytokinins/biosynthesis , Plant Growth Regulators/metabolism , Populus/genetics , Alkyl and Aryl Transferases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Phylogeny , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Populus/metabolism , Tandem Mass Spectrometry
19.
Biosci Rep ; 39(4)2019 04 30.
Article En | MEDLINE | ID: mdl-30914451

Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes, which detoxify aldehydes produced in various metabolic pathways to the corresponding carboxylic acids. Among the 19 human ALDHs, the cytosolic ALDH9A1 has so far never been fully enzymatically characterized and its structure is still unknown. Here, we report complete molecular and kinetic properties of human ALDH9A1 as well as three crystal forms at 2.3, 2.9, and 2.5 Å resolution. We show that ALDH9A1 exhibits wide substrate specificity to aminoaldehydes, aliphatic and aromatic aldehydes with a clear preference for γ-trimethylaminobutyraldehyde (TMABAL). The structure of ALDH9A1 reveals that the enzyme assembles as a tetramer. Each ALDH monomer displays a typical ALDHs fold composed of an oligomerization domain, a coenzyme domain, a catalytic domain, and an inter-domain linker highly conserved in amino-acid sequence and folding. Nonetheless, structural comparison reveals a position and a fold of the inter-domain linker of ALDH9A1 never observed in any other ALDH so far. This unique difference is not compatible with the presence of a bound substrate and a large conformational rearrangement of the linker up to 30 Å has to occur to allow the access of the substrate channel. Moreover, the αßE region consisting of an α-helix and a ß-strand of the coenzyme domain at the dimer interface are disordered, likely due to the loss of interactions with the inter-domain linker, which leads to incomplete ß-nicotinamide adenine dinucleotide (NAD+) binding pocket.


Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/genetics , Protein Conformation , Aldehyde Dehydrogenase/antagonists & inhibitors , Aldehyde Dehydrogenase/ultrastructure , Amino Acid Sequence/genetics , Binding Sites/genetics , Catalytic Domain/genetics , Crystallography, X-Ray , Humans , Kinetics , NAD/genetics , Protein Structure, Secondary , Substrate Specificity/genetics
20.
Chem Biol Interact ; 304: 194-201, 2019 May 01.
Article En | MEDLINE | ID: mdl-30768969

Plant cytosolic aldehyde dehydrogenases from family 2 (ALDH2s, EC 1.2.1.3) are non-specific enzymes and participate for example in the metabolism of acetaldehyde or biosynthesis of phenylpropanoids. Plant aminoaldehyde dehydrogenases (AMADHs, ALDH10 family, EC 1.2.1.19) are broadly specific and play an important role in polyamine degradation or production of osmoprotectants. We have tested imidazole and pyrazole carbaldehydes and their alkyl-, allyl-, benzyl-, phenyl-, pyrimidinyl- or thienyl-derivatives as possible substrates of plant ALDH2 and ALDH10 enzymes. Imidazole represents a building block of histidine, histamine as well as certain alkaloids. It also appears in synthetic pharmaceuticals such as imidazole antifungals. Biological compounds containing pyrazole are rare (e.g. pyrazole-1-alanine and pyrazofurin antibiotics) but the ring is often found as a constituent of many synthetic drugs and pesticides. The aim was to evaluate whether aldehyde compounds based on azole heterocycles are oxidized by the enzymes, which would further support their expected role as detoxifying aldehyde scavengers. The analyzed imidazole and pyrazole carbaldehydes were only slowly converted by ALDH10s but well oxidized by cytosolic maize ALDH2 isoforms (particularly by ALDH2C1). In the latter case, the respective Km values were in the range of 10-2000 µmol l-1; the kcat values appeared mostly between 0.1 and 1.0 s-1. The carbaldehyde group at the position 4 of imidazole was oxidized faster than that at the position 2. Such a difference was not observed for pyrazole carbaldehydes. Aldehydes with an aromatic substituent on their heterocyclic ring were oxidized faster than those with an aliphatic substituent. The most efficient of the tested substrates were comparable to benzaldehyde and p-anisaldehyde known as the best aromatic aldehyde substrates of plant cytosolic ALDH2s in vitro.


Aldehyde Dehydrogenase/metabolism , Aldehydes/metabolism , Pisum sativum/enzymology , Solanum lycopersicum/enzymology , Zea mays/enzymology , Aldehydes/chemistry , Imidazoles/chemistry , Imidazoles/metabolism , Molecular Structure , Oxidation-Reduction , Pyrazoles/chemistry , Pyrazoles/metabolism
...