Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Open Life Sci ; 18(1): 20220577, 2023.
Article En | MEDLINE | ID: mdl-37589006

Most laboratory tests to detect the presence of anti-SARS-CoV-2 antibodies use enzyme-linked immunosorbent assays (ELISA) or chemiluminescence immunoassays (CLIA); however, equipment for these immunoassays is unavailable in many areas of low- and middle-income countries. Rapid lateral flow immunoassay (LFIA) tests are an equipment-free option, but their high price may make them less suitable for conducting seroprevalence surveys. Here, we describe a simple dual antigen ELISA dot-blot test to detect anti-SARS-CoV-2 IgG antibodies with high sensitivity (94-98%) and specificity (92-100%), compared to commercially available ELISA and CLIA options. Additionally, this ELISA dot-blot test can be completed in one hour using minimal laboratory equipment. Importantly, this immunoassay is significantly more affordable than most LFIA tests available on the global market. The dot-blot strips may be stored for up to 7 days under freezing conditions. This ELISA dot-blot test is a cost-effective option for conducting seroprevalence screenings in areas lacking ELISA or CLIA facilities, compared to LFIA tests.

2.
Rev. biol. trop ; 70(1)dic. 2022.
Article En | LILACS, SaludCR | ID: biblio-1387718

Abstract Introduction: Most successful cases of COVID-19 pandemic mitigation and handling have relied on extensive reverse-transcription quantitative polymerase chain reaction (RT-qPCR). However, many emerging economies have struggled with current molecular testing demands due to economic, technical and technological constraints. Objective: To define a potential diagnostic protocol to increase testing capacity in current and post-pandemic conditions. Methods: We reviewed the literature, patents and commercial applications, for alternatives. Results: We found a good potential in saliva samples, viral inactivation and quick RNA extraction by heating; the use of an isothermal technology such as loop mediated isothermal amplification (LAMP) and naked eye test-result visualization by in-tube colorimetry or turbidity. Conclusions: Saliva samples with quick RNA extraction by heating and colorimetric LAMP are promising options for countries with economic and infrastructure limitations.


Resumen Introducción: La mayoría de los casos exitosos de mitigación y manejo de la pandemia de COVID-19 se han dado mediante pruebas basadas en la reacción en cadena de la polimerasa cuantitativa (RT-qPCR por sus siglas en inglés). Sin embargo, muchas economías emergentes han tenido problemas con las demandas actuales de pruebas moleculares debido a limitaciones económicas, técnicas y tecnológicas. Objetivo: Definir un protocolo de diagnóstico potencial para aumentar la capacidad de prueba en las condiciones actuales y posteriores a la pandemia. Métodos: Revisamos la literatura, las patentes y las aplicaciones comerciales, en busca de alternativas. Resultados: Encontramos un buen potencial en muestras de saliva, inactivación viral y extracción rápida de ARN por calentamiento; el uso de una tecnología isotérmica como la amplificación isotérmica mediada por horquillas (LAMP, por sus siglas en inglés) y la visualización del resultado de la prueba a simple vista mediante colorimetría o turbidez en el tubo. Conclusiones: Las muestras de saliva con extracción rápida de ARN por calentamiento y LAMP colorimétrico son opciones prometedoras para países con limitaciones económicas y de infraestructura.


Humans , Molecular Diagnostic Techniques/methods , COVID-19 Serological Testing , COVID-19
3.
Exp Neurol ; 325: 113120, 2020 03.
Article En | MEDLINE | ID: mdl-31751571

Multiple system atrophy (MSA) is a fatal disorder with no effective treatment. MSA pathology is characterized by α-synuclein (aSyn) accumulation in oligodendrocytes, the myelinating glial cells of the central nervous system (CNS). aSyn accumulation in oligodendrocytes forms the pathognomonic glial cytoplasmic inclusions (GCIs) of MSA. MSA aSyn pathology is also associated with motor and autonomic dysfunction, including an impaired ability to sweat. MSA patients have abnormal CNS expression of glial-cell-line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Our prior studies using the parent compound FTY720, a food and drug administration (FDA) approved immunosuppressive for multiple sclerosis, reveal that FTY720 protects parkinsonian mice by increasing BDNF. Our FTY720-derivative, FTY720-Mitoxy, is known to increase expression of oligodendrocyte BDNF, GDNF, and nerve growth factor (NGF) but does not reduce levels of circulating lymphocytes as it is not phosphorylated so cannot modulate sphingosine 1 phosphate receptors (S1PRs). To preclinically assess FTY720-Mitoxy for MSA, we used mice expressing human aSyn in oligodendrocytes under a 2,' 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter. CNP-aSyn transgenic (Tg) mice develop motor dysfunction between 7 and 9 mo, and progressive GCI pathology. Using liquid chromatography-mass spectrometry (LC-MS/MS) and enzymatic assays, we confirmed that FTY720-Mitoxy was stable and active. Vehicle or FTY720-Mitoxy (1.1 mg/kg/day) was delivered to wild type (WT) or Tg littermates from 8.5-11.5 mo by osmotic pump. We behaviorally assessed their movement by rotarod and sweat production by starch­iodine test. Postmortem tissues were evaluated by qPCR for BDNF, GDNF, NGF and GDNF-receptor RET mRNA and for aSyn, BDNF, GDNF, and Iba1 protein by immunoblot. MicroRNAs (miRNAs) were also assessed by qPCR. FTY720-Mitoxy normalized movement, sweat function and soleus muscle mass in 11.5 mo Tg MSA mice. FTY720-Mitoxy also increased levels of brain GDNF and reduced brain miR-96-5p, a miRNA that acts to decrease GDNF expression. Moreover, FTY720-Mitoxy blocked aSyn pathology measured by sequential protein extraction and immunoblot, and microglial activation assessed by immunohistochemistry and immunoblot. In the 3-nitropropionic acid (3NP) toxin model of MSA, FTY720-Mitoxy protected movement and mitochondria in WT and CNP-aSyn Tg littermates. Our data confirm potent in vivo protection by FTY720-Mitoxy, supporting its further evaluation as a potential therapy for MSA and related synucleinopathies.


Fingolimod Hydrochloride/analogs & derivatives , Glial Cell Line-Derived Neurotrophic Factor/biosynthesis , Multiple System Atrophy/pathology , Neuroprotective Agents/pharmacology , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Female , Fingolimod Hydrochloride/pharmacology , Gene Expression Regulation/drug effects , Glial Cell Line-Derived Neurotrophic Factor/drug effects , Humans , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Transgenic , MicroRNAs/drug effects , MicroRNAs/metabolism , Multiple System Atrophy/metabolism , Proto-Oncogene Proteins c-ret/biosynthesis , Proto-Oncogene Proteins c-ret/drug effects , alpha-Synuclein/genetics
4.
Neuropharmacology ; 158: 107701, 2019 11 01.
Article En | MEDLINE | ID: mdl-31291595

Multiple system atrophy (MSA) is a fatal demyelinating disorder lacking any disease-modifying therapies. MSA pathology stems from aggregated α-synuclein (aSyn) accumulation in glial cytosolic inclusions of oligodendroglial cell (OLGs), the myelinating cells of brain. In MSA brains and in MSA animal models with aSyn accumulation in OLGs, aberrant expression of brain-derived neurotrophic factor (BDNF) and glial-cell-line-derived neurotrophic factor (GDNF) occur. Nerve growth factor (NGF) expression can also be altered in neurodegenerative diseases. It is unclear if oxidative stress impacts the viability of aSyn-accumulating OLG cells. Here, we show that OLN-93 cells stably expressing human wild type aSyn or the MSA-associated-aSyn-mutants G51D or A53E, are more vulnerable to oxidative stress. In dose response studies we found that OLN-93 cells treated 48 h with 160 nM FTY720 or our new non-immunosuppressive FTY720-C2 or FTY720-Mitoxy derivatives sustained normal viability. Also, FTY720, FTY720-C2, and FTY720-Mitoxy all stimulated NGF expression at 24 h. However only FTY720-Mitoxy also increased BDNF and GDNF mRNA at 24 h, an effect paralleled by increases in histone 3 acetylation and ERK1/2 phosphorylation. Myelin associated glycoprotein (MAG) levels were also increased in OLN-93 cells after 48 h treatment with FTY720-Mitoxy. FTY720, FTY720-C2, and FTY720-Mitoxy all prevented oxidative-stress-associated-cell-death of OLN-93 cells that lack any aSyn expression. However, only FTY720-Mitoxy protected MSA-like aSyn-expressing-OLN-93-cells against oxidative-cell-death. These data identify potent protective effects for FTY720-Mitoxy with regard to trophic factors as well as MAG expression by OLG cells. Testing of FTY720-Mitoxy in mice is thus a judicious next step for neuropharmacological preclinical development.


Ceramides/pharmacology , Fingolimod Hydrochloride/analogs & derivatives , Multiple System Atrophy/metabolism , Oligodendroglia/drug effects , Oxidative Stress/drug effects , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , alpha-Synuclein/drug effects , Animals , Brain-Derived Neurotrophic Factor/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Cell Line , Fingolimod Hydrochloride/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/drug effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Myelin-Associated Glycoprotein/drug effects , Myelin-Associated Glycoprotein/metabolism , Nerve Growth Factor/drug effects , Nerve Growth Factor/metabolism , Oligodendroglia/metabolism , Rats , alpha-Synuclein/metabolism
5.
Neurosci Lett ; 690: 178-180, 2019 01 18.
Article En | MEDLINE | ID: mdl-30359694

In searching for Parkinson's disease (PD) pharmacotherapies we began studying FTY720, a food and drug administration (FDA) approved drug. We also created derivatives, FTY720-C2 and FTY720-Mitoxy, and began assessing them. Here we treated dopaminergic MN9D cells with FTY720s then measured microRNA (miRNA) levels by PCR arrays. We discovered that all three FTY720s increased miR376b-3p, while FTY720-C2 also increased miR-128-3p, miR-146b-5p, miR-7a-5p, and miR-9-5p, and FTY720-Mitoxy also increased miR-30d-5p. Investigations revealed that some miRNAs downregulate alpha-synuclein, while others reduce apoptosis, suggesting that FTY720s may act to reduce synucleinopathy and dopaminergic neuron loss in PD and related disorders.


Ceramides/pharmacology , Dopaminergic Neurons/metabolism , Fingolimod Hydrochloride/analogs & derivatives , Fingolimod Hydrochloride/pharmacology , MicroRNAs/metabolism , Neuroprotective Agents/metabolism , Up-Regulation/drug effects , Animals , Cells, Cultured , Mice
6.
J Pharmacol Sci ; 133(3): 187-189, 2017 Mar.
Article En | MEDLINE | ID: mdl-28363412

FTY720 is an immunosuppressive multiple sclerosis (MS) drug that stimulates the expression of neuroprotective brain-derived-neurotrophic-factor (BDNF). In vivo preclinical data suggest that FTY720 could be beneficial for treating Parkinson's patients, though its immunosuppressive effects might limit its efficacy. Two novel FTY720-derivatives, FTY720-C2 and FTY720-Mitoxy, also stimulate BDNF expression and enter brain like FTY720 but are not phosphorylated, suggesting they will not produce FTY720-like immunosuppression. Using FTY720 as a positive control, we measured low and high dose FTY720-derivatives, which did not stimulate FTY720-like lymphopenia or immunosuppressive signaling. These findings support the further preclinical assessment of the derivatives as potential novel Parkinson's therapies.


Lymphocytes/drug effects , Sphingosine/pharmacology , Animals , Cell Line, Tumor , Female , Leukocyte Count , Lymphopenia , MAP Kinase Signaling System/drug effects , Male , Mice, Inbred C57BL , Neutrophils/drug effects , Phosphorylation , Receptors, Lysosphingolipid/metabolism , Sphingosine/analogs & derivatives , Sphingosine-1-Phosphate Receptors
7.
Neuropharmacology ; 117: 149-157, 2017 05 01.
Article En | MEDLINE | ID: mdl-28153532

Multiple system atrophy (MSA) is a demyelinating neurodegenerative disorder characterized by accumulation of aggregated α-synuclein (aSyn) inside oligodendrocyte precursors, mature oligodendroglia, and neurons. MSA dysfunction is associated with loss of trophic factor production by glial and neuronal cells. Here, we report that recombinant wild type human aSyn uptake by OLN-93, an oligodendroglia cell-line, reduced brain-derived neurotrophic factor (BDNF) expression. Furthermore, OLN-93 cells stably transfected with human wild type or an MSA-associated mutant aSyn, A53E that produces neuronal and glial inclusions, reduced BDNF mRNA to nearly unmeasurable qPCR levels. Curiously, another MSA-associated aSyn mutant, G51D that also produces neuronal and glial inclusions, caused only a trend toward BDNF mRNA reduction in transfected OLN-93 cells. This suggests that oligodendrocyte-associated BDNF loss occurs in response to specific aSyn types. Treating OLN-93 cells with 160 nM FTY720 (Fingolimod, Gilenya®), a Food and Drug Administration (FDA) approved therapeutic for multiple sclerosis, counteracted BDNF downregulation in all aSyn OLN-93 cells. FTY720 also restored BDNF mRNA in OLN-93 cells treated with recombinant aSyn, as measured by qPCR or semiquantitatively on agarose gels. Immunoblots confirmed that FTY720 increased histone 3 acetylation in OLN-93, and chromatin immunoprecipitation assays showed increased acetylated histone 3 at BDNF promoter 1 after FTY720. Moreover, OLN-93 cells treated with valproic acid, a classic histone deacetylase inhibitor, confirmed that increasing acetylated histone 3 levels increases BDNF expression. Cumulatively, the data suggest that FTY720-associated histone deacetylase inhibition stimulates BDNF expression in oligodendroglial cells, raising the possibility that MSA patients may also benefit by treatment with FTY720.


Brain-Derived Neurotrophic Factor/biosynthesis , Fingolimod Hydrochloride/pharmacology , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/metabolism , Acetylation/drug effects , Animals , Cells, Cultured , Down-Regulation/drug effects , Histones/metabolism , Humans , Mutation , Neuroglia/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Rats , Valproic Acid/pharmacology , alpha-Synuclein/genetics , alpha-Synuclein/pharmacology , beta-Synuclein/metabolism
8.
J Biol Chem ; 291(39): 20811-21, 2016 09 23.
Article En | MEDLINE | ID: mdl-27528608

Patients with Parkinson's disease (PD) often have aggregated α-synuclein (aSyn) in enteric nervous system (ENS) neurons, which may be associated with the development of constipation. This occurs well before the onset of classic PD motor symptoms. We previously found that aging A53T transgenic (Tg) mice closely model PD-like ENS aSyn pathology, making them appropriate for testing potential PD therapies. Here we show that Tg mice overexpressing mutant human aSyn develop ENS pathology by 4 months. We then evaluated the responses of Tg mice and their WT littermates to the Food and Drug Administration-approved drug FTY720 (fingolimod, Gilenya) or vehicle control solution from 5 months of age. Long term oral FTY720 in Tg mice reduced ENS aSyn aggregation and constipation, enhanced gut motility, and increased levels of brain-derived neurotrophic factor (BDNF) but produced no significant change in WT littermates. A role for BDNF was directly assessed in a cohort of young A53T mice given vehicle, FTY720, the Trk-B receptor inhibitor ANA-12, or FTY720 + ANA-12 from 1 to 4 months of age. ANA-12-treated Tg mice developed more gut aSyn aggregation as well as constipation, whereas FTY720-treated Tg mice had reduced aSyn aggregation and less constipation, occurring in part by increasing both pro-BDNF and mature BDNF levels. The data from young and old Tg mice revealed FTY720-associated neuroprotection and reduced aSyn pathology, suggesting that FTY720 may also benefit PD patients and others with synucleinopathy. Another finding was a loss of tyrosine hydroxylase immunoreactivity in gut neurons with aggregated aSyn, comparable with our prior findings in the CNS.


Aging/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Fingolimod Hydrochloride/pharmacology , Gastrointestinal Motility/drug effects , Parkinson Disease/drug therapy , Protein Precursors/metabolism , alpha-Synuclein/metabolism , Aging/drug effects , Aging/genetics , Aging/pathology , Animals , Brain-Derived Neurotrophic Factor/genetics , Gastrointestinal Motility/genetics , Humans , Mice , Mice, Transgenic , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Precursors/genetics , alpha-Synuclein/genetics
...