Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 260, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177119

RESUMEN

The electrochemical conversion of nitrate to ammonia is a way to eliminate nitrate pollutant in water. Cu-Co synergistic effect was found to produce excellent performance in ammonia generation. However, few studies have focused on this effect in high-entropy oxides. Here, we report the spin-related Cu-Co synergistic effect on electrochemical nitrate-to-ammonia conversion using high-entropy oxide Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. In contrast, the Li-incorporated MgCoNiCuZnO exhibits inferior performance. By correlating the electronic structure, we found that the Co spin states are crucial for the Cu-Co synergistic effect for ammonia generation. The Cu-Co pair with a high spin Co in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O can facilitate ammonia generation, while a low spin Co in Li-incorporated MgCoNiCuZnO decreases the Cu-Co synergistic effect on ammonia generation. These findings offer important insights in employing the synergistic effect and spin states inside for selective catalysis. It also indicates the generality of the magnetic effect in ammonia synthesis between electrocatalysis and thermal catalysis.

2.
Nano Lett ; 23(23): 11233-11242, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37992235

RESUMEN

Rechargeable magnesium batteries (RMBs) have been proposed as a promising alternative to currently commercialized lithium-ion batteries. However, Mg anode passivation in conventional electrolytes necessitates the use of highly corrosive Cl- ions in the electrolyte. Herein for the first time, we design a chloride-free electrolyte for RMBs with magnesium bis(hexamethyldisilazide) (Mg(HMDS)2) and magnesium triflate (Mg(OTf)2) as the main salts and tetrabutylammonium triflate (TBAOTf) as an additive. The TBAOTf additive improved the dissolution of Mg salts, consequently enhancing the charge-carrying species in the electrolyte. COMSOL studies further revealed desirable Mg growth in our modulated electrolyte, substantiated by homogeneous electric flux distribution across the electrolyte-electrode interface. Post-mortem chemical composition analysis uncovered a MgF2-rich solid electrolyte interphase (SEI) that facilitated exceptional Mg deposition/dissolution reversibility. Our study illustrates a highly promising strategy for synthesizing a corrosion-free and reversible Mg battery electrolyte with a widened anodic stability window of up to 4.43 V.

3.
ACS Nano ; 17(19): 19459-19469, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37768556

RESUMEN

Low-temperature lithium metal batteries are of vital importance for cold-climate condition applications. Their realization, however, is plagued by the extremely sluggish Li+ transport kinetics in the vicinity of Li metal anode at low temperatures. Different from the widely adopted electrolyte engineering, a functional interphase design concept is proposed in this work to efficiently improve the low-temperature electrochemical reaction kinetics of Li metal anodes. As a proof of concept, we design a hybrid polymer-alloy-fluoride (PAF) interphase featuring numerous gradient fluorinated solid-solution alloy composite nanoparticles embedded in a polymerized dioxolane matrix. Systematic experimental and theoretical investigations demonstrate that the hybrid PAF interphase not only exhibits superior lithiophilicity but also provides abundant ionic conductive pathways for homogeneous and fast Li+ transport at the Li-electrolyte interface. With enhanced interfacial dynamics of Li-ion migration, the as-designed PAF-Li anode works stably for 720 h with low voltage hysteresis and dendrite-free electrode morphology in symmetric cell configurations at -40 °C. The full cells with PAF-Li anode display a commercial-grade capacity of 4.26 mAh cm-2 and high capacity retention of 74.7% after 150 cycles at -20 °C. The rational functional interphase design for accelerating ion-transfer kinetics sheds innovative insights for developing high-areal-capacity and long-lifespan lithium metal batteries at low temperatures.

4.
iScience ; 26(8): 107410, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37593457

RESUMEN

Nitrogen oxides (NOx) emissions carry pernicious consequences on air quality and human health, prompting an upsurge of interest in eliminating them from the atmosphere. The electrochemical NOx reduction reaction (NOxRR) is among the promising techniques for NOx removal and potential conversion into valuable chemical feedstock with high conversion efficiency while benefiting energy conservation. However, developing efficient and stable electrocatalysts for NOxRR remains an arduous challenge. This review provides a comprehensive survey of recent advancements in NOxRR, encompassing the underlying fundamentals of the reaction mechanism and rationale behind the design of electrocatalysts using computational modeling and experimental efforts. The potential utilization of NOxRR in a Zn-NOx battery is also explored as a proof of concept for concurrent NOx abatement, NH3 synthesis, and decarbonizing energy generation. Despite significant strides in this domain, several hurdles still need to be resolved in developing efficient and long-lasting electrocatalysts for NOx reduction. These possible means are necessary to augment the catalytic activity and electrocatalyst selectivity and surmount the challenges of catalyst deactivation and corrosion. Furthermore, sustained research and development of NOxRR could offer a promising solution to the urgent issue of NOx pollution, culminating in a cleaner and healthier environment.

5.
Nano Lett ; 23(12): 5762-5769, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37310729

RESUMEN

Lithium-sulfur batteries (LSBs) are known to be potential next-generation energy storage devices. Recently, our group reported an LSB cathode made using sulfur spheres that has been spherically templated by MXene nanosheets decorated with CoSe2 nanoparticles, forming a "loose-templating" configuration. It was postulated that the minimal restacking of the outer nanoparticle-decorated MXene layer helps to enable facile ionic transport. However, as the nanosheets do not adhere conformally to the internal sphere's surface, such a configuration can be controversial, thus requiring a more systematic understanding. In this work, we report and quantify for the first time the independent and dependent variables involved in this morphology, allowing us to identify that having smaller nanoparticles resulted in better Li+ ion transport and enhanced electrochemical performances. The optimized cathode structure exhibited an initial specific capacity of 1274 mAh/g and a 0.06% decay rate per cycle at 0.5 C over 1000 cycles in LSBs.

6.
Nano Lett ; 23(8): 3592-3598, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37036465

RESUMEN

MXenes and sulfurized polyacrylonitrile (S-PAN) are emerging as possible contenders to resolve the polysulfide dissolution and volumetric expansion issues in sodium-sulfur batteries. Herein, we explore the interactions between Ti3C2Tx MXenes and S-PAN with traditional binders such as polyvinylidene difluoride (PVDF), poly(acrylic acid) (PAA), and carboxymethyl cellulose (CMC) in Na-S batteries for the first time. We hypothesize that the linearity and polarity of the binder significantly influence the dispersion of S-PAN over Ti3C2Tx. The three-dimensional polar CMC binder resulted in better contact surface area with both S-PAN and Ti3C2Tx. Moreover, the improved binding of the discharge products with the CMC binder effectively traps them and prevents unwanted shuttling. Consequently, the Na-S battery using the CMC binder displayed a high initial capacity of 1282 mAh/g(s) at 0.2 C and a low capacity fading of 0.092% per cycle over 300 cycles. This work highlights the importance of understanding MXene-binder interactions in sulfur cathodes.

7.
Nano Lett ; 23(8): 3369-3376, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37052625

RESUMEN

Lithium (Li) metal has attracted great attention as a promising high-capacity anode material for next-generation high-energy-density rechargeable batteries. Nonuniform Li+ transport and uneven Li plating/stripping behavior are two key factors that deteriorate the electrochemical performance. In this work, we propose an interphase acid-base interaction effect that could regulate Li plating/stripping behavior and stabilize the Li metal anode. ZSM-5, a class of zeolites with ordered nanochannels and abundant acid sites, was employed as a functional interface layer to facilitate Li+ transport and mitigate the cell concentration polarization. As a demonstration, a pouch cell with a high-areal-capacity LiNi0.95Co0.02Mn0.03O2 cathode (3.7 mAh cm-2) and a ZSM-5 modified thin lithium anode (50 µm) delivered impressive electrochemical performance, showing 92% capacity retention in 100 cycles (375.7 mAh). This work reveals the effect of acid-base interaction on regulating lithium plating/stripping behaviors, which could be extended to developing other high-performance alkali metal anodes.

8.
Small Methods ; 7(8): e2201598, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36807580

RESUMEN

Magnesium metal batteries are promising candidates for next-generation high-energy-density and low-cost energy storage systems. Their application, however, is precluded by infinite relative volume changes and inevitable side reactions of Mg metal anodes. These issues become more pronounced at large areal capacities that are required for practical batteries. Herein, for the first time, double-transition-metal MXene films are developed to promote deeply rechargeable magnesium metal batteries using Mo2 Ti2 C3 as a representative example. The freestanding Mo2 Ti2 C3 films, which are prepared using a simple vacuum filtration method, possess good electronic conductivity, unique surface chemistry, and high mechanical modulus. These superior electro-chemo-mechanical merits of Mo2 Ti2 C3 films help to accelerate electrons/ions transfer, suppress electrolyte decomposition and dead Mg formation, as well as maintain electrode structural integrity during long-term and large-capacity operation. As a result, the as-developed Mo2 Ti2 C3 films exhibit reversible Mg plating/stripping with high Coulombic efficiency of 99.3% at a record-high capacity of 15 mAh cm-2 . This work not only sheds innovative insights into current collector design for deeply cyclable Mg metal anodes, but also paves the way for the application of double-transition-metal MXene materials in other alkali and alkaline earth metal batteries.

9.
J Environ Manage ; 334: 117477, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36780811

RESUMEN

The intensification of fossil fuel usage results in significant air pollution levels. Efforts have been put into developing efficient technologies capable of converting air pollution into valuable products, including fuels and valuable chemicals (e.g., CO2 to hydrocarbon and syngas and NOx to ammonia). Among the strategic efforts to mitigate the excessive concentration of CO2 and NOx pollutants in the atmosphere, the electrochemical reduction technology of CO2 (CO2RR) and NOx (NOxRR) emerges as one of the most promising approaches. It is even more attractive if CO2RR and NOxRR are paired with renewables to store intermittent electricity in the form of chemical feedstocks. This review provides an overview of the electrochemical reduction process to convert CO2 to C1 and/or C2+ chemicals and NOx to ammonia (NH3) with a focus on electrocatalysts, electrolytes, electrolyzer, and catalytic reactor designs toward highly selective electrochemical conversion of the desired products. While the attempts in these aspects are enormous, economic consideration and environmental feasibility for actual implementation are not comprehensively provided. We discuss CO2RR and NOxRR from the life cycle and techno-economic analyses to perceive the feasibility of the current achievements. The remaining challenges associated with the industrial implementation of electrochemical CO2 and NOx reduction are additionally provided.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Amoníaco , Dióxido de Carbono , Tecnología
10.
Nano Lett ; 23(4): 1564-1572, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36749889

RESUMEN

Highly reversible Mg battery chemistry demands a suitable electrolyte formulation highly compatible with currently available electrodes. In general, conventional electrolytes form a passivation layer on the Mg anode, requiring the use of MgCl2 additives that lead to severe corrosion of cell components and low anodic stability. Herein, for the first time, we conducted a comparative study of a series of Mg halides as potential electrolyte additives in conventional magnesium bis(hexamethyldisilazide)-based electrolytes. A novel electrolyte formulation that includes MgBr2 showed unprecedented performance in magnesium plating/stripping, with an average Coulombic efficiency of 99.26% over 1000 cycles at 0.5 mA/cm2 and 0.5 mAh/cm2. Further analysis revealed the in situ formation of a robust Mg anode-electrolyte interface, which leads to dendrite-free Mg deposition and stable cycling performance in a Mg-Mo6S8 battery over 100 cycles. This study demonstrates the rational formulation of a novel MgBr2-based electrolyte with high anodic stability of 3.1 V for promising future applications.

11.
Mater Horiz ; 10(2): 393-406, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36541226

RESUMEN

Advances in machine learning (ML) provide the means to bypass bottlenecks in the discovery of new electrocatalysts using traditional approaches. In this review, we highlight the currently achieved work in ML-accelerated discovery and optimization of electrocatalysts via a tight collaboration between computational models and experiments. First, the applicability of available methods for constructing machine-learned potentials (MLPs), which provide accurate energies and forces for atomistic simulations, are discussed. Meanwhile, the current challenges for MLPs in the context of electrocatalysis are highlighted. Then, we review the recent progress in predicting catalytic activities using surrogate models, including microkinetic simulations and more global proxies thereof. Several typical applications of using ML to rationalize thermodynamic proxies and predict the adsorption and activation energies are also discussed. Next, recent developments of ML-assisted experiments for catalyst characterization, synthesis optimization and reaction condition optimization are illustrated. In particular, the applications in ML-enhanced spectra analysis and the use of ML to interpret experimental kinetic data are highlighted. Additionally, we also show how robotics are applied to high-throughput synthesis, characterization and testing of electrocatalysts to accelerate the materials exploration process and how this equipment can be assembled into self-driven laboratories.

12.
Nat Rev Mater ; 8(3): 202-215, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36277083

RESUMEN

Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it demands advances - at the materials, devices and systems levels - for the efficient harvesting, storage, conversion and management of renewable energy. Energy researchers have begun to incorporate machine learning (ML) techniques to accelerate these advances. In this Perspective, we highlight recent advances in ML-driven energy research, outline current and future challenges, and describe what is required to make the best use of ML techniques. We introduce a set of key performance indicators with which to compare the benefits of different ML-accelerated workflows for energy research. We discuss and evaluate the latest advances in applying ML to the development of energy harvesting (photovoltaics), storage (batteries), conversion (electrocatalysis) and management (smart grids). Finally, we offer an overview of potential research areas in the energy field that stand to benefit further from the application of ML.

13.
Nano Lett ; 22(24): 10184-10191, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36475747

RESUMEN

Two-dimensional metal dichalcogenides have demonstrated outstanding potential as cathodes for magnesium-ion batteries. However, the limited capacity, poor cycling stability, and severe electrode pulverization, resulting from lack of void space for expansion, impede their further development. In this work, we report for the first time, nickel sulfide (NiS2) hollow nanospheres assembled with nanoparticles for use as cathode materials in magnesium-ion batteries. Notably, the nanospheres were prepared by a one-step solvothermal process in the absence of an additive. The results show that regulating the synergistic effect between the rich anions and hollow structure positively affects its electrochemical performance. Crystallographic and microstructural characterizations reveal the reversible anionic redox of S2-/(S2)2-, consistent with density functional theory results. Consequently, the optimized cathode (8-NiS2 hollow nanospheres) could deliver a large capacity of 301 mA h g-1 after 100 cycles at 50 mA g-1, supporting the promising practical application of NiS2 hollow nanospheres in magnesium-ion batteries.

14.
Sci Bull (Beijing) ; 67(7): 716-724, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36546136

RESUMEN

Despite the advances of aqueous zinc (Zn) batteries as sustainable energy storage systems, their practical application remains challenging due to the issues of spontaneous corrosion and dendritic deposits at the Zn metal anode. In this work, conformal growth of zinc hydroxide sulfate (ZHS) with dominating (001) facet was realized on (002) plane-dominated Zn metal foil fabricated through a facile thermal annealing process. The ZHS possessed high Zn2+ conductivity (16.9 mS cm-1) and low electronic conductivity (1.28 × 104 Ω cm), and acted as a heterogeneous and robust solid electrolyte interface (SEI) layer on metallic Zn electrode, which regulated the electrochemical Zn plating behavior and suppressed side reactions simultaneously. Moreover, low self-diffusion barrier along the (002) plane promoted the 2D diffusion and horizontal electrochemical plating of metallic Zn for (002)-textured Zn electrode. Consequently, the as-achieved Zn electrode exhibited remarkable cycling stability over 7000 cycles at 2 mA cm-2 and 0.5 mAh cm-2 with a low overpotential of 25 mV in symmetric cells. Pairing with a MnO2 cathode, the as-achieved Zn electrode achieved stable cell cycling with 92.7% capacity retention after 1000 cycles at 10 C with a remarkable average Coulombic efficiency of 99.9%.

15.
Nanomicro Lett ; 15(1): 21, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36580172

RESUMEN

Rechargeable Al batteries (RAB) are promising candidates for safe and environmentally sustainable battery systems with low-cost investments. However, the currently used aluminum chloride-based electrolytes present a significant challenge to commercialization due to their corrosive nature. Here, we report for the first time, a novel electrolyte combination for RAB based on aluminum trifluoromethanesulfonate (Al(OTf)3) with tetrabutylammonium chloride (TBAC) additive in diglyme. The presence of a mere 0.1 M of TBAC in the Al(OTf)3 electrolyte generates the charge carrying electrochemical species, which forms the basis of reaction at the electrodes. TBAC reduces the charge transfer resistance and the surface activation energy at the anode surface and also augments the dissociation of Al(OTf)3 to generate the solid electrolyte interphase components. Our electrolyte's superiority directly translates into reduced anodic overpotential for cells that ran for 1300 cycles in Al plating/stripping tests, the longest cycling life reported to date. This unique combination of salt and additive is non-corrosive, exhibits a high flash point and is cheaper than traditionally reported RAB electrolyte combinations, which makes it commercially promising. Through this report, we address a major roadblock in the commercialization of RAB and inspire equivalent electrolyte fabrication approaches for other metal anode batteries.

16.
Nano Lett ; 22(22): 9138-9146, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36354212

RESUMEN

Owing to its high volumetric capacity and natural abundance, magnesium (Mg) metal has attracted tremendous attention as an ideal anode material for rechargeable Mg batteries. Despite Mg deposition playing an integral role in determining the cycling lifespan, its exact behavior is not clearly understood yet. Herein, for the first time, we introduce a facile approach to build magnesiophilic In/MgIn sites in situ on a Mg metal surface using InCl3 electrolyte additive for rechargeable Mg batteries. These magnesiophilic sites can regulate Mg deposition behaviors by homogenizing the distributions of Mg-ion flux and electric field at the electrode-electrolyte interphase, allowing flat and compact Mg deposition to inhibit short-circuiting. The as-designed Mg metal batteries achieve a stable cycling lifespan of 340 h at 1.0 mA cm-2 and 1.0 mAh cm-2 using Celgard separators, while the full cell coupled with Mo6S8 cathode maintains a high capacity retention of 95.5% over 800 cycles at 1 C.

17.
Nano Lett ; 22(21): 8679-8687, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36315106

RESUMEN

Two-dimensional MXenes produce competitive performances when incorporated into lithium-sulfur batteries (LSBs), solving key problems such as the poor electronic conductivity of sulfur and dissolution of its polysulfide intermediates. However, MXene nanosheets are known to easily aggregate and restack during electrode fabrication, filtration, or water removal, limiting their practical applicability. Furthermore, in complex electrocatalytic reactions like the multistep sulfur reduction process in LSBs, MXene alone is insufficient to ensure an optimal reaction pathway. In this work, we demonstrate for the first time a loose templating of sulfur spheres using Ti3C2Tx MXene nanosheets decorated with polymorphic CoSe2 nanoparticles. This work shows that the templating of sulfur spheres using nanoparticle-decorated MXene nanosheets can prevent nanosheet aggregation and exert a strong electrocatalytic effect, thereby enabling improved reaction kinetics and battery performance. The S@MXene-CoSe2 cathode demonstrated a long cycle life of 1000 cycles and a low capacity decay rate of 0.06% per cycle in LSBs.

18.
Dalton Trans ; 51(38): 14491-14497, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36106440

RESUMEN

This article presents a study on the effect of the hydroxyl group position on the electro-oxidation of butanediols, including 1,2-butanediol, 2,3-butanediol, 1,3-butanediol, and 1,4-butanediol. The effect of the hydroxyl group position in butanediols on their electro-oxidation reactivities is investigated by cyclic voltammetry, linear sweep voltammetry, chronopotentiometry and chronoamperometry in 1.0 M KOH. The results show that the closer the two hydroxyl groups are, the higher the reactivity, and the lower the anodic potential butanediol has. Moreover, the oxidation products from chronoamperometry are analyzed by means of HPLC and NMR. Some value-added products, such as 3-hydroxypropionic acid/3-hydroxypropionate, are produced. The DFT calculation indicates that the oxidation of vicinal diols responds to the conversion from a hydroxyl group to a carboxylate group, followed by C-C bond cleavage, where the carbon charge decreases. These results provide an insight into reactant selection for the electrochemical synthesis of value-added chemicals.

19.
Nano Lett ; 22(16): 6808-6815, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35947428

RESUMEN

Metallic magnesium is a promising high-capacity anode material for energy storage technologies beyond lithium-ion batteries. However, most reported Mg metal anodes are only cyclable under shallow cycling (≤1 mAh cm-2) and thus poor Mg utilization (<3%) conditions, significantly compromising their energy-dense characteristic. Herein, composite Mg metal anodes with high capacity utilization of 75% are achieved by coating magnesiophilic gold nanoparticles on copper foils for the first time. Benefiting from homogeneous ionic flux and uniform deposition morphology, the Mg-plated Au-Cu electrode exhibits high average Coulombic efficiency of 99.16% over 170 h cycling at 75% Mg utilization. Moreover, the full cell based on Mg-plated Au-Cu anode and Mo6S8 cathode achieves superior capacity retention of 80% after 300 cycles at a low negative/positive ratio of 1.33. This work provides a simple yet effective general strategy to enhance Mg utilization and reversibility, which can be extended to other metal anodes as well.

20.
ACS Appl Mater Interfaces ; 14(33): 37709-37715, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35952661

RESUMEN

The structure and electrochemical performance of lithium (Li) metal degrade quickly owing to its hostless nature and high reactivity, hindering its practical application in rechargeable high energy density batteries. In order to enhance the electrochemical reversibility of metallic Li, we designed a Li/Li2S-poly(acrylonitrile) (LSPAN) composite foil via a facile mechanical kneading approach using metallic Li and sulfurized poly(acrylonitrile) as the raw materials. The uniformly dispersed Li2S-poly(acrylonitrile) (Li2S-PAN) in a metallic Li matrix buffered the volume change on cycling, and its high Li ion conductivity enabled fast Li ion diffusion behavior of the composite electrode. As expected, the LSPAN electrode showed reduced voltage polarization, enhanced rate capability, and prolonged cycle life compared with the pure Li electrode. It exhibited stable cycling for 600 h with a symmetric cell configuration at 1 mA cm-2 and 1 mA h cm-2, far outperforming the pure metallic Li counterpart (400 h). Also, the LiCoO2||LSPAN full cells with a cathode mass loading of ∼16 mg cm-2 worked stably for 100 cycles at 0.5 C with a high capacity retention of 96.5%, while the LiCoO2||Li full cells quickly failed within only 50 cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...