Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 93
1.
Front Allergy ; 5: 1385168, 2024.
Article En | MEDLINE | ID: mdl-38845678

Background: Previous research showed that 5-hydroxytryptophan (5HTP), a metabolic precursor of serotonin, reduces allergic lung inflammation by inhibiting eosinophil migration across endothelial monolayers. Objective: It is unknown if serotonin receptors are involved in mediating this 5HTP function or if serotonin receptor (HTR) single nucleotide polymorphisms (SNPs) associate with lung function in humans. Methods: Serotonin receptor subtypes were assessed by qPCR, western blot, confocal microscopy, pharmacological inhibitors and siRNA knockdown. HTR SNPs were assessed in two cohorts. Results: Pharmacological inhibition or siRNA knockdown of the serotonin receptors HTR1A or HTR1B in endothelial cells abrogated the inhibitory effects of 5HTP on eosinophil transendothelial migration. In contrast, eosinophil transendothelial migration was not inhibited by siRNA knockdown of HTR1A or HTR1B in eosinophils. Surprisingly, these HTRs were intracellular in endothelial cells and an extracellular supplementation with serotonin did not inhibit eosinophil transendothelial migration. This is consistent with the inability of serotonin to cross membranes, the lack of selective serotonin reuptake receptors on endothelial cells, and the studies showing minimal impact of selective serotonin reuptake inhibitors on asthma. To extend our HTR studies to humans with asthma, we examined the CHIRAH and GALA cohorts for HTR SNPs that affect HTR function or are associated with behavior disorders. A polygenic index of SNPs in HTRs was associated with lower lung function in asthmatics. Conclusions: Serotonin receptors mediate 5HTP inhibition of transendothelial migration and HTR SNPs associate with lower lung function. These results may serve to aid in design of novel interventions for allergic inflammation.

2.
medRxiv ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38699325

Epidemiologic studies demonstrate an association between early-life respiratory illnesses (RIs) and the development of childhood asthma. However, it remains uncertain whether these children are predisposed to both conditions or if early-life RIs induce alterations in airway function, immune responses, or other human biology that contribute to the development of asthma. Puerto Rican children experience a disproportionate burden of early-life RIs and asthma, making them an important population for investigating this complex interplay. PRIMERO, the Puerto Rican Infant Metagenomics and Epidemiologic Study of Respiratory Outcomes , recruited pregnant women and their newborns to investigate how the airways develop in early life among infants exposed to different viral RIs, and will thus provide a critical understanding of childhood asthma development. As the first asthma birth cohort in Puerto Rico, PRIMERO will prospectively follow 2,100 term healthy infants. Collected samples include post-term maternal peripheral blood, infant cord blood, the child's peripheral blood at the year two visit, and the child's nasal airway epithelium, collected using minimally invasive nasal swabs, at birth, during RIs over the first two years of life, and at annual healthy visits until age five. Herein, we describe the study's design, population, recruitment strategy, study visits and procedures, and primary outcomes.

3.
Am J Epidemiol ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38775275

The Human Epidemiology and Response to SARS-CoV-2 (HEROS) is a prospective multi-city 6-month incidence study which was conducted from May 2020-February 2021. The objectives were to identify risk factors for SARS-CoV-2 infection and household transmission among children and people with asthma and allergic diseases, and to use the host nasal transcriptome sampled longitudinally to understand infection risk and sequelae at the molecular level. To overcome challenges of clinical study implementation due to the coronavirus pandemic, this surveillance study used direct-to-participant methods to remotely enroll and prospectively follow eligible children who are participants in other NIH-funded pediatric research studies and their household members. Households participated in weekly surveys and biweekly nasal sampling regardless of symptoms. The aim of this report is to widely share the methods and study instruments and to describe the rationale, design, execution, logistics and characteristics of a large, observational, household-based, remote cohort study of SARS-CoV-2 infection and transmission in households with children. The study enrolled a total of 5,598 individuals, including 1,913 principal participants (children), 1,913 primary caregivers, 729 secondary caregivers and 1,043 other household children. This study was successfully implemented without necessitating any in-person research visits and provides an approach for rapid execution of clinical research.

4.
Pediatr Pulmonol ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38558492

RATIONALE: Social determinants of health underlie disparities in asthma. However, the effects of individual determinants likely interact, so a summary metric may better capture their impact. The Child Opportunity Index 2.0 (COI) is one such tool, yet its association with exacerbation-prone (EP) asthma is unknown. OBJECTIVE: To investigate the association between the COI and EP asthma and clinical measures of asthma severity in children. METHODS: We analyzed data from two prospective observational pediatric asthma cohorts (n = 193). Children were classified as EP (≥1 exacerbation in the past 12 months) or exacerbation-null (no exacerbations in the past 5 years). Spirometry, exhaled nitric oxide, IgE, and Composite Asthma Severity Index (CASI) were obtained. The association between COI and EP status was assessed with logistic regression. We fit linear and logistic regression models to test the association between COI and each clinical measure. RESULTS: A 20-point COI decrease conferred 40% higher odds of EP asthma (OR 1.4; 95%CI 1.1-1.76). The effect was similar when adjusted for age and sex (OR 1.38, 95%CI 1.1-1.75) but was attenuated with additional adjustment for race and ethnicity (OR 1.19, 95%CI 0.92-1.54). A similar effect was seen for the Social/Economic and Education COI domains but not the Health/Environment Domain. A 20-point COI decrease was associated with an increase in CASI of 0.34. COI was not associated with other clinical measures. CONCLUSIONS: Lower COI was associated with greater odds of EP asthma. This highlights the potential use of the COI to understand neighborhood-level risk and identify community targets to reduce asthma disparities.

5.
J Allergy Clin Immunol ; 153(4): 954-968, 2024 Apr.
Article En | MEDLINE | ID: mdl-38295882

Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.


Asthma , Hypersensitivity , United States , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Hypersensitivity/genetics , Asthma/etiology , Genomics , Proteomics , Metabolomics
6.
medRxiv ; 2023 Sep 23.
Article En | MEDLINE | ID: mdl-37790375

Background: Indoor and outdoor air pollution levels are associated with poor asthma outcomes in children. However, few studies have evaluated whether breathing zone pollutant levels associate with asthma outcomes. Objective: Determine breathing zone exposure levels of NO 2 , O 3 , total PM 10 and PM 10 constituents among children with exacerbation-prone asthma, and examine correspondence with in-home and community measurements and associations with outcomes. Methods: We assessed children's personal breathing zone exposures using wearable monitors. Personal exposures were compared to in-home and community measurements and tested for association with lung function, asthma control, and asthma exacerbations. Results: 81 children completed 219 monitoring sessions. Correlations between personal and community levels of PM 10 , NO 2 , and O 3 were poor, whereas personal PM 10 and NO 2 levels correlated with in-home measurements. However, in-home monitoring underdetected brown carbon (Personal:79%, Home:36.8%) and ETS (Personal:83.7%, Home:4.1%) personal exposures, and detected black carbon in participants without these personal exposures (Personal: 26.5%, Home: 96%). Personal exposures were not associated with lung function or asthma control. Children experiencing an asthma exacerbation within 60 days of personal exposure monitoring had 1.98, 2.21 and 2.04 times higher brown carbon (p<0.001), ETS (p=0.007), and endotoxin (p=0.012), respectively. These outcomes were not associated with community or in-home exposure levels. Conclusions: Monitoring pollutant levels in the breathing zone is essential to understand how exposures influence asthma outcomes, as agreement between personal and in-home monitors is limited. Inhaled exposure to PM 10 constituents modifies asthma exacerbation risk, suggesting efforts to limit these exposures among high-risk children may decrease their asthma burden. CLINICAL IMPLICATIONS: In-home and community monitoring of environmental pollutants may underestimate personal exposures. Levels of inhaled exposure to PM 10 constituents appear to strongly influence asthma exacerbation risk. Therefore, efforts should be made to mitigate these exposures. CAPSULE SUMMARY: Leveraging wearable, breathing-zone monitors, we show exposures to inhaled pollutants are poorly proxied by in-home and community monitors, among children with exacerbation-prone asthma. Inhaled exposure to multiple PM 10 constituents is associated with asthma exacerbation risk.

7.
Clin Epigenetics ; 15(1): 156, 2023 10 03.
Article En | MEDLINE | ID: mdl-37784136

BACKGROUND: Albuterol is the first-line asthma medication used in diverse populations. Although DNA methylation (DNAm) is an epigenetic mechanism involved in asthma and bronchodilator drug response (BDR), no study has assessed whether albuterol could induce changes in the airway epithelial methylome. We aimed to characterize albuterol-induced DNAm changes in airway epithelial cells, and assess potential functional consequences and the influence of genetic variation and asthma-related clinical variables. RESULTS: We followed a discovery and validation study design to characterize albuterol-induced DNAm changes in paired airway epithelial cultures stimulated in vitro with albuterol. In the discovery phase, an epigenome-wide association study using paired nasal epithelial cultures from Puerto Rican children (n = 97) identified 22 CpGs genome-wide associated with repeated-use albuterol treatment (p < 9 × 10-8). Albuterol predominantly induced a hypomethylation effect on CpGs captured by the EPIC array across the genome (probability of hypomethylation: 76%, p value = 3.3 × 10-5). DNAm changes on the CpGs cg23032799 (CREB3L1), cg00483640 (MYLK4-LINC01600), and cg05673431 (KSR1) were validated in nasal epithelia from 10 independent donors (false discovery rate [FDR] < 0.05). The effect on the CpG cg23032799 (CREB3L1) was cross-tissue validated in bronchial epithelial cells at nominal level (p = 0.030). DNAm changes in these three CpGs were shown to be influenced by three independent genetic variants (FDR < 0.05). In silico analyses showed these polymorphisms regulated gene expression of nearby genes in lungs and/or fibroblasts including KSR1 and LINC01600 (6.30 × 10-14 ≤ p ≤ 6.60 × 10-5). Additionally, hypomethylation at the CpGs cg10290200 (FLNC) and cg05673431 (KSR1) was associated with increased gene expression of the genes where they are located (FDR < 0.05). Furthermore, while the epigenetic effect of albuterol was independent of the asthma status, severity, and use of medication, BDR was nominally associated with the effect on the CpG cg23032799 (CREB3L1) (p = 0.004). Gene-set enrichment analyses revealed that epigenomic modifications of albuterol could participate in asthma-relevant processes (e.g., IL-2, TNF-α, and NF-κB signaling pathways). Finally, nine differentially methylated regions were associated with albuterol treatment, including CREB3L1, MYLK4, and KSR1 (adjusted p value < 0.05). CONCLUSIONS: This study revealed evidence of epigenetic modifications induced by albuterol in the mucociliary airway epithelium. The epigenomic response induced by albuterol might have potential clinical implications by affecting biological pathways relevant to asthma.


Asthma , DNA Methylation , Child , Humans , Epigenomics , Asthma/drug therapy , Asthma/genetics , Albuterol/pharmacology , Albuterol/therapeutic use , Epigenesis, Genetic , Bronchodilator Agents/pharmacology , Bronchodilator Agents/therapeutic use , Epithelial Cells , Genome-Wide Association Study
8.
Mucosal Immunol ; 16(3): 357-372, 2023 06.
Article En | MEDLINE | ID: mdl-37088263

Differences in transcriptomes, transcription factor usage, and function have identified T follicular helper 2 (Tfh2) cells and T helper 2 (Th2) cells as distinct clusters of differentiation 4+",(CD4) T-cell subsets in settings of type-2 inflammation. Although the transcriptional programs driving Th2 cell differentiation and cytokine production are well defined, dependence on these classical Th2 programs by Tfh2 cells is less clear. Using cytokine reporter mice in combination with transcription factor inference analysis, the b-Zip transcription factor c-Maf and its targets were identified as an important regulon in both Th2 and Tfh2 cells. Conditional deletion of c-Maf in T cells confirmed its importance in type-2 cytokine expression by Th2 and Tfh2 cells. However, while c-Maf was not required for Th2-driven helminth clearance or lung eosinophilia, it was required for Tfh2-driven Immunoglobulin E production and germinal center formation. This differential regulation of cell-mediated and humoral immunity by c-Maf was a result of redundant pathways in Th2 cells that were absent in Tfh2 cells, and c-Maf-specific mechanisms in Tfh2 cells that were absent in Th2 cells. Thus, despite shared expression by Tfh2 and Th2 cells, c-Maf serves as a unique regulator of Tfh2-driven humoral hallmarks during type-2 immunity.


Helminthiasis , Th2 Cells , Mice , Animals , Gene Expression Regulation , Transcription Factors/metabolism , Cytokines/metabolism , Gene Expression , Th1 Cells
9.
bioRxiv ; 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36909594

BACKGROUND: A subgroup of atopic dermatitis (AD) patients suffer from recurrent, disseminated herpes simplex virus (HSV) skin infections, termed eczema herpeticum (EH), which can be life-threatening and contribute to AD morbidity. The pathobiology underlying ADEH is unknown. OBJECTIVE: To determine transcriptional mechanisms of skin and immune system pathobiology that underlie ADEH disease. METHODS: We performed whole transcriptome RNA-sequencing of non-lesional skin samples (epidermis, dermis) of AD patients with (ADEH + , n=15) and without (ADEH - , n=13) recurrent EH history, and healthy controls (HC, n=15). We also performed RNA-sequencing on plasmacytoid dendritic cells (pDCs) collected from these participants and infected in vitro with HSV-1. Differential expression, gene set enrichment, and endotyping analyses were performed. RESULTS: ADEH + disease was characterized by dysregulation in skin gene expression, which was limited in dermis (differentially expressed genes [DEGs]=14) and widespread in epidermis (DEGs=129). ADEH + -upregulated epidermal DEGs were enriched in type 2 cytokine (T2) ( IL4R, CCL22, CRLF2, IL7R ), interferon ( CXCL10, ICAM1, IFI44 , and IRF7) , and IL-36γ ( IL36G ) inflammatory pathway genes. At a person-level, all ADEH + participants exhibited T2 and interferon endotypes and 87% were IL36G-high. In contrast, these endotypes were more variably expressed among ADEH - participants. ADEH + patient skin also exhibited dysregulation in epidermal differentiation complex (EDC) genes within the LCE, S100 , and SPRR families, which are involved in skin barrier function, inflammation, and antimicrobial activities. pDC transcriptional responses to HSV-1 infection were not altered by ADEH status. CONCLUSIONS: ADEH + pathobiology is characterized by a unique, multi-faceted epidermal inflammation that accompanies dysregulation in the expression of EDC genes. Key Messages: AD patients with a history of recurrent EH exhibit molecular skin pathobiology that is similar in form, but more severe in degree, than in AD patients without this complication. Non-lesional skin of ADEH + patients concurrently exhibits excessive type 2 cytokine, interferon, and IL-36γ-driven epidermal inflammation. Expression of these inflammatory skin endotypes among ADEH + patients is associated with dysregulation in expression of epidermal differentiation complex genes involved in barrier function, inflammation, and antimicrobial activity. Capsule Summary: AD patients with a history of recurrent disseminated HSV-1 skin infections form a unique molecular skin endotype group that concurrently exhibits type 2 cytokine, interferon, and IL-36γ-driven skin inflammation, accompanied by dysregulation in expression of epidermal differentiation complex genes involved in barrier function, inflammation, and antimicrobial activity.

10.
J Allergy Clin Immunol ; 152(1): 94-106.e12, 2023 07.
Article En | MEDLINE | ID: mdl-36893862

BACKGROUND: Type 1 (T1) inflammation (marked by IFN-γ expression) is now consistently identified in subsets of asthma cohorts, but how it contributes to disease remains unclear. OBJECTIVE: We sought to understand the role of CCL5 in asthmatic T1 inflammation and how it interacts with both T1 and type 2 (T2) inflammation. METHODS: CCL5, CXCL9, and CXCL10 messenger RNA expression from sputum bulk RNA sequencing, as well as clinical and inflammatory data were obtained from the Severe Asthma Research Program III (SARP III). CCL5 and IFNG expression from bronchoalveolar lavage cell bulk RNA sequencing was obtained from the Immune Mechanisms in Severe Asthma (IMSA) cohort and expression related to previously identified immune cell profiles. The role of CCL5 in tissue-resident memory T-cell (TRM) reactivation was evaluated in a T1high murine severe asthma model. RESULTS: Sputum CCL5 expression strongly correlated with T1 chemokines (P < .001 for CXCL9 and CXCL10), consistent with a role in T1 inflammation. CCL5high participants had greater fractional exhaled nitric oxide (P = .009), blood eosinophils (P < .001), and sputum eosinophils (P = .001) in addition to sputum neutrophils (P = .001). Increased CCL5 bronchoalveolar lavage expression was unique to a previously described T1high/T2variable/lymphocytic patient group in the IMSA cohort, with IFNG trending with worsening lung obstruction only in this group (P = .083). In a murine model, high expression of the CCL5 receptor CCR5 was observed in TRMs and was consistent with a T1 signature. A role for CCL5 in TRM activation was supported by the ability of the CCR5 inhibitor maraviroc to blunt reactivation. CONCLUSION: CCL5 appears to contribute to TRM-related T1 neutrophilic inflammation in asthma while paradoxically also correlating with T2 inflammation and with sputum eosinophilia.


Asthma , Chemokine CCL5 , Animals , Humans , Mice , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Chemokines/metabolism , Eosinophils , Inflammation/metabolism , Neutrophils , Sputum
11.
Viruses ; 15(3)2023 03 14.
Article En | MEDLINE | ID: mdl-36992456

Rhinoviruses (RVs) are major instigators of acute exacerbations of asthma, COPD, and other respiratory diseases. RVs are categorized into three species (RV-A, RV-B, and RV-C), which comprise more than 160 serotypes, making it difficult to develop an effective vaccine. Currently, no effective treatment for RV infection is available. Pulmonary surfactant is an extracellular complex of lipids and proteins that plays a central role in regulating innate immunity in the lung. The minor pulmonary surfactant lipids, palmitoyl-oleoyl-phosphatidylglycerol (POPG) and phosphatidylinositol (PI), are potent regulators of inflammatory processes and exert antiviral activity against respiratory syncytial virus (RSV) and influenza A viruses (IAV). In the current study, we examined the potencies of POPG and PI against rhinovirus A16 (RV-A16) in primary human airway epithelial cells (AECs) differentiated at an air-liquid interface (ALI). After AECs were infected with RV-A16, PI reduced the viral RNA copy number by 70% and downregulated (55-75%) the expression of antiviral (MDA5, IRF7, and IFN-lambda) and CXCL11 chemokine genes. In contrast, POPG only slightly decreased MDA5 (24%) and IRF7 (11%) gene expression but did not inhibit IFN-lambda gene expression or RV-A16 replication in AECs. However, both POPG and PI inhibited (50-80%) IL6 gene expression and protein secretion and CXCL11 protein secretion. PI treatment dramatically attenuated global gene expression changes induced by RV-A16 infection alone in AECs. The observed inhibitory effects were indirect and resulted mainly from the inhibition of virus replication. Cell-type enrichment analysis of viral-regulated genes opposed by PI treatment revealed the PI-inhibited viral induction of goblet cell metaplasia and the virus-induced downregulation of ciliated, club, and ionocyte cell types. Notably, the PI treatment also altered the ability of RV-A16 to regulate the expression of some phosphatidylinositol 4-kinase (PI4K); acyl-CoA-binding, domain-containing (ACBD); and low-density lipoprotein receptor (LDLR) genes that play critical roles in the formation and functioning of replication organelles (ROs) required for RV replication in host cells. These data suggest PI can be used as a potent, non-toxic, antiviral agent for RV infection prophylaxis and treatment.


Enterovirus Infections , Picornaviridae Infections , Pulmonary Surfactants , Humans , Pulmonary Surfactants/pharmacology , Rhinovirus/genetics , Epithelial Cells , Epithelium/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Enterovirus Infections/drug therapy , Lung/metabolism , Lipids
12.
J Allergy Clin Immunol ; 151(5): 1277-1285, 2023 05.
Article En | MEDLINE | ID: mdl-36736797

BACKGROUND: Epithelial remodeling is a histopathologic feature of chronic inflammatory airway diseases including chronic rhinosinusitis (CRS). Cell-type shifts and their relationship to CRS endotypes and severity are incompletely described. OBJECTIVE: We sought to understand the relationship of epithelial cell remodeling to inflammatory endotypes and disease outcomes in CRS. METHODS: Using cell-type transcriptional signatures derived from epithelial single-cell sequencing, we analyzed bulk RNA-sequencing data from sinus epithelial brushings obtained from patients with CRS with and without nasal polyps in comparison to healthy controls. RESULTS: The airway epithelium in nasal polyposis displayed increased tuft cell transcripts and decreased ciliated cell transcripts along with an IL-13 activation signature. In contrast, CRS without polyps showed an IL-17 activation signature. IL-13 activation scores were associated with increased tuft cell, goblet cell, and mast cell scores and decreased ciliated cell scores. Furthermore, the IL-13 score was strongly associated with a previously reported activated ("polyp") tuft cell score and a prostaglandin E2 activation signature. The Lund-Mackay score, a computed tomographic metric of sinus opacification, correlated positively with activated tuft cell, mast cell, prostaglandin E2, and IL-13 signatures and negatively with ciliated cell transcriptional signatures. CONCLUSIONS: These results demonstrate that cell-type alterations and prostaglandin E2 stimulation are key components of IL-13-induced epithelial remodeling in nasal polyposis, whereas IL-17 signaling is more prominent in CRS without polyps, and that clinical severity correlates with the degree of IL-13-driven epithelial remodeling.


Nasal Polyps , Rhinitis , Sinusitis , Humans , Interleukin-13 , Nasal Polyps/pathology , Rhinitis/pathology , Interleukin-17 , Dinoprostone , Sinusitis/pathology , Chronic Disease , Nasal Mucosa/pathology
14.
J Allergy Clin Immunol ; 150(4): 756-765, 2022 10.
Article En | MEDLINE | ID: mdl-36037873

Transcriptomics has revolutionized our understanding of the pathobiologic heterogeneity underlying complex allergic diseases, leading to both the discovery of multiple inflammatory allergic disease endotypes and the development of targeted biologic therapies. In addition, transcriptomic endotypes have been associated with disease severity, exacerbation propensity, and responsiveness to nontargeted therapies, suggesting an unrealized potential for transcriptomic assays and endotyping to be used as diagnostic, predictive, and prognostic biomarkers. In this review, we discuss current and emerging transcriptomic technologies and how they have been used to uncover allergic disease endotypes and generate other clinically relevant findings. We then discuss how transcriptomics could be leveraged in the clinic for the delivery of personalized, rational patient care, and we consider strategies for and impediments to their future clinical deployment.


Hypersensitivity , Transcriptome , Biomarkers , Clinical Decision-Making , Humans , Hypersensitivity/diagnosis , Hypersensitivity/genetics , Hypersensitivity/therapy
15.
Sci Rep ; 12(1): 12514, 2022 07 22.
Article En | MEDLINE | ID: mdl-35869121

Variability in response to short-acting ß2-agonists (e.g., albuterol) among patients with asthma from diverse racial/ethnic groups may contribute to asthma disparities. We sought to identify genetic variants associated with bronchodilator response (BDR) to identify potential mechanisms of drug response and risk factors for worse asthma outcomes. Genome-wide association studies of bronchodilator response (BDR) were performed using TOPMed Whole Genome Sequencing data of the Asthma Translational Genomic Collaboration (ATGC), which corresponded to 1136 Puerto Rican, 656 Mexican and 4337 African American patients with asthma. With the population-specific GWAS results, a trans-ethnic meta-analysis was performed to identify BDR-associated variants shared across the three populations. Replication analysis was carried out in three pediatric asthma cohorts, including CAMP (Childhood Asthma Management Program; n = 560), GACRS (Genetics of Asthma in Costa Rica Study; n = 967) and HPR (Hartford-Puerto Rico; n = 417). A genome-wide significant locus (rs35661809; P = 3.61 × 10-8) in LINC02220, a non-coding RNA gene, was identified in Puerto Ricans. While this region was devoid of protein-coding genes, capture Hi-C data showed a distal interaction with the promoter of the DNAH5 gene in lung tissue. In replication analysis, the GACRS cohort yielded a nominal association (1-tailed P < 0.05). No genetic variant was associated with BDR at the genome-wide significant threshold in Mexicans and African Americans. Our findings help inform genetic underpinnings of BDR for understudied minority patients with asthma, but the limited availability of genetic data for racial/ethnic minority children with asthma remains a paramount challenge.


Asthma , Bronchodilator Agents , Asthma/drug therapy , Asthma/genetics , Axonemal Dyneins/genetics , Bronchodilator Agents/therapeutic use , Child , Ethnicity , Genome-Wide Association Study , Hispanic or Latino/genetics , Humans , Mexican Americans/genetics , Minority Groups , Polymorphism, Single Nucleotide
16.
Sci Transl Med ; 14(664): eabo5070, 2022 09 28.
Article En | MEDLINE | ID: mdl-35857635

A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted SARS-CoV-2 strain MA10 produces an acute respiratory distress syndrome in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days after virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of profibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early antifibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.


COVID-19 , Animals , Antiviral Agents , COVID-19/complications , Fibrosis , Humans , Lung/pathology , Mice , SARS-CoV-2
17.
medRxiv ; 2022 Jul 10.
Article En | MEDLINE | ID: mdl-35860216

The Human Epidemiology and Response to SARS-CoV-2 (HEROS) is a prospective multi-city 6-month incidence study which was conducted from May 2020-February 2021. The objectives were to identify risk factors for SARS-CoV-2 infection and household transmission among children and people with asthma and allergic diseases, and to use the host nasal transcriptome sampled longitudinally to understand infection risk and sequelae at the molecular level. To overcome challenges of clinical study implementation due to the coronavirus pandemic, this surveillance study used direct-to-participant methods to remotely enroll and prospectively follow eligible children who are participants in other NIH-funded pediatric research studies and their household members. Households participated in weekly surveys and biweekly nasal sampling regardless of symptoms. The aim of this report is to widely share the methods and study instruments and to describe the rationale, design, execution, logistics and characteristics of a large, observational, household-based, remote cohort study of SARS-CoV-2 infection and transmission in households with children. The study enrolled a total of 5,598 individuals, including 1,913 principal participants (children), 1,913 primary caregivers, 729 secondary caregivers and 1,043 other household children. This study was successfully implemented without necessitating any in-person research visits and provides an approach for rapid execution of clinical research.

18.
J Allergy Clin Immunol ; 150(2): 302-311, 2022 08.
Article En | MEDLINE | ID: mdl-35660376

BACKGROUND: Whether children and people with asthma and allergic diseases are at increased risk for severe acute respiratory syndrome virus 2 (SARS-CoV-2) infection is unknown. OBJECTIVE: Our aims were to determine the incidence of SARS-CoV-2 infection in households with children and to also determine whether self-reported asthma and/or other allergic diseases are associated with infection and household transmission. METHODS: For 6 months, biweekly nasal swabs and weekly surveys were conducted within 1394 households (N = 4142 participants) to identify incident SARS-CoV-2 infections from May 2020 to February 2021, which was the pandemic period largely before a vaccine and before the emergence of SARS-CoV-2 variants. Participant and household infection and household transmission probabilities were calculated by using time-to-event analyses, and factors associated with infection and transmission risk were determined by using regression analyses. RESULTS: In all, 147 households (261 participants) tested positive for SARS-CoV-2. The household SARS-CoV-2 infection probability was 25.8%; the participant infection probability was similar for children (14.0% [95% CI = 8.0%-19.6%]), teenagers (12.1% [95% CI = 8.2%-15.9%]), and adults (14.0% [95% CI = 9.5%-18.4%]). Infections were symptomatic in 24.5% of children, 41.2% of teenagers, and 62.5% of adults. Self-reported doctor-diagnosed asthma was not a risk factor for infection (adjusted hazard ratio [aHR] = 1.04 [95% CI = 0.73-1.46]), nor was upper respiratory allergy or eczema. Self-reported doctor-diagnosed food allergy was associated with lower infection risk (aHR = 0.50 [95% CI = 0.32-0.81]); higher body mass index was associated with increased infection risk (aHR per 10-point increase = 1.09 [95% CI = 1.03-1.15]). The household secondary attack rate was 57.7%. Asthma was not associated with household transmission, but transmission was lower in households with food allergy (adjusted odds ratio = 0.43 [95% CI = 0.19-0.96]; P = .04). CONCLUSION: Asthma does not increase the risk of SARS-CoV-2 infection. Food allergy is associated with lower infection risk, whereas body mass index is associated with increased infection risk. Understanding how these factors modify infection risk may offer new avenues for preventing infection.


Asthma , COVID-19 , Hypersensitivity , Adolescent , Adult , Asthma/epidemiology , COVID-19/epidemiology , Child , Humans , Hypersensitivity/epidemiology , Prospective Studies , Risk Factors , SARS-CoV-2
19.
JCI Insight ; 7(13)2022 07 08.
Article En | MEDLINE | ID: mdl-35608904

Chronic type 2 (T2) inflammatory diseases of the respiratory tract are characterized by mucus overproduction and disordered mucociliary function, which are largely attributed to the effects of IL-13 on common epithelial cell types (mucus secretory and ciliated cells). The role of rare cells in airway T2 inflammation is less clear, though tuft cells have been shown to be critical in the initiation of T2 immunity in the intestine. Using bulk and single-cell RNA sequencing of airway epithelium and mouse modeling, we found that IL-13 expanded and programmed airway tuft cells toward eicosanoid metabolism and that tuft cell deficiency led to a reduction in airway prostaglandin E2 (PGE2) concentration. Allergic airway epithelia bore a signature of PGE2 activation, and PGE2 activation led to cystic fibrosis transmembrane receptor-dependent ion and fluid secretion and accelerated mucociliary transport. These data reveal a role for tuft cells in regulating epithelial mucociliary function in the allergic airway.


Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dinoprostone , Interleukin-13/metabolism , Mice , Respiratory System
20.
Nat Commun ; 13(1): 1632, 2022 03 28.
Article En | MEDLINE | ID: mdl-35347136

To identify genetic determinants of airway dysfunction, we performed a transcriptome-wide association study for asthma by combining RNA-seq data from the nasal airway epithelium of 681 children, with UK Biobank genetic association data. Our airway analysis identified 95 asthma genes, 58 of which were not identified by transcriptome-wide association analyses using other asthma-relevant tissues. Among these genes were MUC5AC, an airway mucin, and FOXA3, a transcriptional driver of mucus metaplasia. Muco-ciliary epithelial cultures from genotyped donors revealed that the MUC5AC risk variant increases MUC5AC protein secretion and mucus secretory cell frequency. Airway transcriptome-wide association analyses for mucus production and chronic cough also identified MUC5AC. These cis-expression variants were associated with trans effects on expression; the MUC5AC variant was associated with upregulation of non-inflammatory mucus secretory network genes, while the FOXA3 variant was associated with upregulation of type-2 inflammation-induced mucus-metaplasia pathway genes. Our results reveal genetic mechanisms of airway mucus pathobiology.


Asthma , Transcriptome , Asthma/genetics , Asthma/metabolism , Child , Epithelium/metabolism , Humans , Metaplasia/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism
...