Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 7(6)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200399

RESUMEN

The precise characterization of the mechanisms modulating Aspergillus fumigatus survival within airway epithelial cells has been impaired by the lack of live-cell imaging technologies and user-friendly quantification approaches. Here we described the use of an automated image analysis pipeline to estimate the proportion of A. fumigatus spores taken up by airway epithelial cells, those contained within phagolysosomes or acidified phagosomes, along with the fungal factors contributing to these processes. Coupling the use of fluorescent A. fumigatus strains and fluorescent epithelial probes targeting lysosomes, acidified compartments and cell membrane, we found that both the efficacy of lysosome recruitment to phagosomes and phagosome acidification determines the capacity of airway epithelial cells to contain A. fumigatus growth. Overall, the capability of the airway epithelium to prevent A. fumigatus survival was higher in bronchial epithelial than alveolar epithelial cells. Certain A. fumigatus cell wall mutants influenced phagosome maturation in airway epithelial cells. Taken together, this live-cell 4D imaging approach allows observation and measurement of the very early processes of A. fumigatus interaction within live airway epithelial monolayers.

2.
Fungal Genet Biol ; 151: 103470, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32979514

RESUMEN

Calcium signalling plays a fundamental role in fungal intracellular signalling. Previous approaches (fluorescent dyes, bioluminescent aequorin, genetically encoded cameleon probes) with imaging rapid subcellular changes in cytosolic free calcium ([Ca2+]c) in fungal cells have produced inconsistent results. Recent data obtained with new fluorescent, genetically encoded GCaMP probes, that are very bright, have resolved this problem. Here, exposing conidia or conidial germlings to high external Ca2+, as an example of an external stressor, induced very dramatic, rapid and dynamic [Ca2+]c changes with localized [Ca2+]c transients and waves. Considerable heterogeneity in the timing of Ca2+ responses of different spores/germlings within the cell population was observed.


Asunto(s)
Aspergillus fumigatus/metabolismo , Calcio/metabolismo , Colorantes Fluorescentes/metabolismo , Genes Reporteros , Señalización del Calcio , Calmodulina/genética , Calmodulina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Sondas Moleculares , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Esporas Fúngicas/metabolismo
3.
Front Microbiol ; 11: 1955, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973709

RESUMEN

Aspergillus fumigatus is the most important mould pathogen in immunosuppressed patients. Suboptimal clearance of inhaled spores results in the colonisation of the lung airways by invasive hyphae. The first point of contact between A. fumigatus and the host is the lung epithelium. In vitro and ex vivo studies have characterised critical aspects of the interaction of invasive hyphae on the surface of epithelial cells. However, the cellular interplay between internalised A. fumigatus and the lung epithelium remains largely unexplored. Here, we use high-resolution live-cell confocal microscopy, 3D rendered imaging and transmission electron microscopy to define the development of A. fumigatus after lung epithelium internalisation in vitro. Germination, morphology and growth of A. fumigatus were significantly impaired upon internalisation by alveolar (A549) and bronchial (16HBE) lung epithelial cells compared to those growing on the host surface. Internalised spores and germlings were surrounded by the host phagolysosome membrane. Sixty per cent of the phagosomes containing germlings were not acidified at 24 h post infection allowing hyphal development. During escape, the phagolysosomal membrane was not ruptured but likely fused to host plasma membrane allowing hyphal exit from the intact host cell in an non-lytic Manner. Subsequently, escaping hyphae elongated between or through adjacent epithelial lung cells without penetration of the host cytoplasm. Hyphal tips penetrating new epithelial cells were surrounded by the recipient cell plasma membrane. Altogether, our results suggest cells of lung epithelium survive fungal penetration because the phagolysosomal and plasma membranes are never breached and that conversely, fungal spores survive due to phagosome maturation failure. Consequently, fungal hyphae can grow through the epithelial cell layer without directly damaging the host. These processes likely prevent the activation of downstream immune responses alongside limiting the access of professional phagocytes to the invading fungal hypha. Further research is needed to investigate if these events also occur during penetration of fungi in endothelial cells, fibroblasts and other cell types.

4.
Artículo en Inglés | MEDLINE | ID: mdl-28760907

RESUMEN

Caspofungin targets cell wall ß-1,3-glucan synthesis and is the international consensus guideline-recommended salvage therapy for invasive aspergillosis. Although caspofungin is inhibitory at low concentrations, it exhibits a paradoxical effect (reversal of growth inhibition) at high concentrations by an undetermined mechanism. Treatment with caspofungin at either the growth-inhibitory concentration (0.5 µg/ml) or paradoxical growth-inducing concentration (4 µg/ml) for 24 h caused similar abnormalities, including wider, hyperbranched hyphae, increased septation, and repeated hyphal tip lysis, followed by regenerative intrahyphal growth. By 48 h, only hyphae at the colony periphery treated with the high caspofungin concentration displayed paradoxical growth. A similar high concentration of caspofungin also induced the paradoxical growth of Aspergillus fumigatus during human A549 alveolar cell invasion. Localization of the ß-1,3-glucan synthase complex (Fks1 and Rho1) revealed significant differences between cells exposed to the growth-inhibitory and paradoxical growth-inducing concentrations of caspofungin. At both concentrations, Fks1 initially mislocalized from the hyphal tips to vacuoles. However, only continuous exposure to 4 µg/ml of caspofungin for 48 h led to recovery of the normal hyphal morphology with renewed localization of Fks1 to hyphal tips. Rho1 remained at the hyphal tip after treatment with both caspofungin concentrations but was required for paradoxical growth. Farnesol blocked paradoxical growth and relocalized Fks1 and Rho1 to vacuoles. Our results highlight the importance of regenerative intrahyphal growth as a rapid adaptation to the fungicidal lytic effects of caspofungin on hyphal tips and the dynamic localization of Fks1 as part of the mechanism for the caspofungin-mediated paradoxical response in A. fumigatus.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/crecimiento & desarrollo , Equinocandinas/farmacología , Glucosiltransferasas/metabolismo , Hifa/crecimiento & desarrollo , Lipopéptidos/farmacología , Células A549 , Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Caspofungina , Línea Celular , Pared Celular/efectos de los fármacos , Farnesol/farmacología , Humanos , Hifa/efectos de los fármacos , beta-Glucanos/metabolismo
5.
Vet Microbiol ; 200: 101-106, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27569992

RESUMEN

The gene mecA and its homologue mecC confer methicillin resistance in Staphylococcus aureus and other staphylococci. Methicillin-resistant staphylococci (MRS) are considered resistant to all ß-lactam antibiotics. To avoid the use of ß-lactam antibiotics for the control of MRS infections, there is an urgent need for a fast and reliable screening assay for mecA and mecC that can easily be integrated in routine laboratory diagnostics. The aim of this study was the development of such a rapid detection method for methicillin resistance based on nucleic acid lateral flow immunoassay (NALFIA) technology. In NALFIA, the target sequences are PCR-amplified, immobilized via antigen-antibody interaction and finally visualized as distinct black bars resulting from neutravidin-labeled carbon particles via biotin-neutravidin interaction. A screening of 60 defined strains (MRS and non-target bacteria) and 28 methicillin-resistant S. aureus (MRSA) isolates from clinical samples was performed with PCR-NALFIA in comparison to PCR with subsequent gel electrophoresis (PCR-GE) and real-time PCR. While all samples were correctly identified with all assays, PCR-NALFIA was superior with respect to limits of detection. Moreover, this assay allowed for differentiation between mecA and mecC by visualizing the two alleles at different positions on NALFIA test stripes. However, since this test system only targets the mecA and mecC genes, it does not allow to determine in which staphylococcal species the mec gene is included. Requiring only a fraction of the time needed for cultural methods (i.e. the gold standard), the PCR-NALFIA presented here is easy to handle and can be readily integrated into laboratory diagnostics.


Asunto(s)
Proteínas Bacterianas/genética , Inmunoensayo/veterinaria , Proteínas de Unión a las Penicilinas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Infecciones Estafilocócicas/veterinaria , Staphylococcus/aislamiento & purificación , Animales , Antibacterianos/farmacología , Inmunoensayo/métodos , Resistencia a la Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Staphylococcus/efectos de los fármacos , Staphylococcus/genética , beta-Lactamas/farmacología
6.
Mol Microbiol ; 95(3): 472-90, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25425138

RESUMEN

Vesicle traffic involves budding, transport, tethering and fusion of vesicles with acceptor membranes. GTP-bound small Rab GTPases interact with the membrane of vesicles, promoting their association with other factors before their subsequent fusion. Filamentous fungi contain at their hyphal apex the Spitzenkörper (Spk), a multivesicular structure to which vesicles concentrate before being redirected to specific cell sites. The regulatory mechanisms ensuring the directionality of the vesicles that travel to the Spk are still unknown. Hence, we analyzed YPT-1, the Neurospora crassa homologue of Saccharomyces cerevisiae Ypt1p (Rab1), which regulates different secretory pathway events. Laser scanning confocal microscopy revealed fluorescently tagged YPT-1 at the Spk and putative Golgi cisternae. Co-expression of YPT-1 and predicted post-Golgi Rab GTPases showed YPT-1 confined to the Spk microvesicular core, while SEC-4 (Rab8) and YPT-31 (Rab11) occupied the Spk macrovesicular peripheral layer, suggesting that trafficking and organization of macro and microvesicles at the Spk are regulated by distinct Rabs. Partial colocalization of YPT-1 with USO-1 (p115) and SEC-7 indicated the additional participation of YPT-1 at early and late Golgi trafficking steps.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Neurospora crassa/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Hifa/metabolismo , Neurospora crassa/citología , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
7.
PLoS Genet ; 10(9): e1004586, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25254656

RESUMEN

Microtubules (MTs) are pivotal for numerous eukaryotic processes ranging from cellular morphogenesis, chromosome segregation to intracellular transport. Execution of these tasks requires intricate regulation of MT dynamics. Here, we identify a new regulator of the Schizosaccharomyces pombe MT cytoskeleton: Asp1, a member of the highly conserved Vip1 inositol polyphosphate kinase family. Inositol pyrophosphates generated by Asp1 modulate MT dynamic parameters independent of the central +TIP EB1 and in a dose-dependent and cellular-context-dependent manner. Importantly, our analysis of the in vitro kinase activities of various S. pombe Asp1 variants demonstrated that the C-terminal phosphatase-like domain of the dual domain Vip1 protein negatively affects the inositol pyrophosphate output of the N-terminal kinase domain. These data suggest that the former domain has phosphatase activity. Remarkably, Vip1 regulation of the MT cytoskeleton is a conserved feature, as Vip1-like proteins of the filamentous ascomycete Aspergillus nidulans and the distantly related pathogenic basidiomycete Ustilago maydis also affect the MT cytoskeleton in these organisms. Consistent with the role of interphase MTs in growth zone selection/maintenance, all 3 fungal systems show aspects of aberrant cell morphogenesis. Thus, for the first time we have identified a conserved biological process for inositol pyrophosphates.


Asunto(s)
Hongos/metabolismo , Microtúbulos/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Proliferación Celular , Proteínas Fúngicas/metabolismo , Hongos/genética , Hongos/crecimiento & desarrollo , Fosfatos de Inositol/metabolismo , Interfase , Proteínas Asociadas a Microtúbulos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo
8.
PLoS One ; 9(4): e94546, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24722460

RESUMEN

Hydrophobins are amphiphilic proteins able to self-assemble at water-air interphases and are only found in filamentous fungi. In Aspergillus nidulans two hydrophobins, RodA and DewA, have been characterized, which both localize on the conidiospore surface and contribute to its hydrophobicity. RodA is the constituent protein of very regularly arranged rodlets, 10 nm in diameter. Here we analyzed four more hydrophobins, DewB-E, in A. nidulans and found that all six hydrophobins contribute to the hydrophobic surface of the conidiospores but only deletion of rodA caused loss of the rodlet structure. Analysis of the rodlets in the dewB-E deletion strains with atomic force microscopy revealed that the rodlets appeared less robust. Expression of DewA and DewB driven from the rodA promoter and secreted with the RodA secretion signal in a strain lacking RodA, restored partly the hydrophobicity. DewA and B were able to form rodlets to some extent but never reached the rodlet structure of RodA. The rodlet-lacking rodA-deletion strain opens the possibility to systematically study rodlet formation of other natural or synthetic hydrophobins.


Asunto(s)
Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Esporas Fúngicas/química , Secuencia de Aminoácidos , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Prueba de Complementación Genética , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Datos de Secuencia Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Propiedades de Superficie
9.
Eukaryot Cell ; 12(7): 1020-32, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23687116

RESUMEN

Biological motors are molecular nanomachines, which convert chemical energy into mechanical forces. The combination of mechanoenzymes with structural components, such as the cytoskeleton, enables eukaryotic cells to overcome entropy, generate molecular gradients, and establish polarity. Hyphae of filamentous fungi are among the most polarized cells, and polarity defects are most obvious. Here, we studied the role of the kinesin-3 motor, NKIN2, in Neurospora crassa. We found that NKIN2 localizes as fast-moving spots in the cytoplasm of mature hyphae. To test whether the spots represented early endosomes, the Rab5 GTPase YPT52 was used as an endosomal marker. NKIN2 colocalized with YPT52. Deletion of nkin2 caused strongly reduced endosomal movement. Combined, these results confirm the involvement of NKIN2 in early endosome transport. Introduction of a rigor mutation into NKIN2 labeled with green fluorescent protein (GFP) resulted in decoration of microtubules. Interestingly, NKIN2(rigor) was associated with a subpopulation of microtubules, as had been shown earlier for the Aspergillus nidulans orthologue UncA. Other kinesins did not show this specificity.


Asunto(s)
Polaridad Celular , Endosomas/metabolismo , Cinesinas/metabolismo , Neurospora crassa/crecimiento & desarrollo , Neurospora crassa/metabolismo , Transporte Biológico , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Cinesinas/química , Microtúbulos/metabolismo , Movimiento , Neurospora crassa/citología , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo
10.
PLoS One ; 7(2): e30976, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363525

RESUMEN

Posttranslational microtubule modifications (PTMs) are numerous; however, the biochemical and cell biological roles of those modifications remain mostly an enigma. The Aspergillus nidulans kinesin-3 UncA uses preferably modified microtubules (MTs) as tracks for vesicle transportation. Here, we show that a positively charged region in the tail of UncA (amino acids 1316 to 1402) is necessary for the recognition of modified MTs. Chimeric proteins composed of the kinesin-1 motor domain and the UncA tail displayed the same specificity as UncA, suggesting that the UncA tail is sufficient to establish specificity. Interaction between the UncA tail and alpha-tubulin was shown using a yeast two-hybrid assay and in A. nidulans by bimolecular fluorescence complementation. This is the first demonstration of how a kinesin-3 motor protein distinguishes among different MT populations in fungal cells, and how specificity determination depends on the tail rather than the motor domain, as has been demonstrated for kinesin 1 in neuronal cells.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Aspergillus nidulans/citología , Eliminación de Gen , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...