Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295278

RESUMEN

The increasing importance of regenerative medicine has resulted in a growing need for advanced tissue replacement materials in head and neck surgery. Allo- and xenogenic graft processing is often time-consuming and can deteriorate the extracellular matrix (ECM). High hydrostatic pressure (HHP)-treatment could allow specific devitalization while retaining the essential properties of the ECM. Porcine connective tissue and cartilage were HHP-treated at 100-400 MPa for 10 min. Structural modifications following HHP-exposure were examined using electron microscopy, while devitalization was assessed through metabolism and cell death analyses. Furthermore, ECM alterations and decellularization were evaluated by histology, biomechanical testing, and DNA content analysis. Additionally, the inflammatory potential of HHP-treated tissue was evaluated in vivo using a dorsal skinfold chamber in a mouse model. The devitalization effects of HHP were dose-dependent, with a threshold identified at 200 MPa for fibroblasts and chondrocytes. At this pressure level, HHP induced structural alterations in cells, with a shift toward late-stage apoptosis. HHP-treatment preserved ECM structure and biomechanical properties, but did not remove cell debris from the tissue. This study observed a pressure-dependent increase of markers suggesting the occurrence of immunogenic cell death. In vivo investigations revealed an absence of inflammatory responses to HHP-treated tissue, indicating a favorable biological response to HHP. In conclusion, application of HHP devitalizes fibroblasts and chondrocytes at 200 MPa while retaining the essential properties of the ECM. Prospectively, HHP may simplify the preparation of allo- and xenogenic tissue replacement materials and increase the availability of grafts in head and neck surgery.

2.
Front Bioeng Biotechnol ; 12: 1432587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104631

RESUMEN

Introduction: Intervertebral disk degeneration is a growing problem in our society. The degeneration of the intervertebral disk leads to back pain and in some cases to a herniated disk. Advanced disk degeneration can be treated surgically with either a vertebral body fusion or a disk prosthesis. Vertebral body fusion is currently considered the gold standard of surgical therapy and is clearly superior to disk prosthesis based on the number of cases. The aim of this work was the 3D printing of Gyroid structures and the determination of their mechanical properties in a biomechanical feasibility study for possible use as an intervertebral disc prosthesis. Material and methods: Creo Parametric 6.0.6.0 was used to create models with various Gyroid properties. These were printed with the Original Prusa i3 MK3s+. Different flexible filaments (TPU FlexHard and TPU FlexMed, extrudr, Lauterach, Austria) were used to investigate the effects of the filament on the printing results and mechanical properties of the models. Characterization was carried out by means of microscopy and tension/compression testing on the universal testing machine. Results: The 3D prints with the FlexHard and FlexMid filament went without any problems. No printing errors were detected in the microscopy. The mechanical confined compression test resulted in force-deformation curves of the individual printed models. This showed that changing the Gyroid properties (increasing the wall thickness or density of the Gyroid) leads to changes in the force-deformation curves and thus to the mechanical properties. Conlcusion: The flexible filaments used in this work showed good print quality after the printing parameters were adjusted. The mechanical properties of the discs were also promising. The parameters Gyroid volume, wall thickness of the Gyroid and the outer wall played a decisive role for both FlexMed and FlexHard. All in all, the Gyroid structured discs (Ø 50 mm) made of TPU represent a promising approach with regard to intervertebral disc replacement. We would like to continue to pursue this approach in the future.

3.
Biomedicines ; 12(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39200264

RESUMEN

The aim of the study was to compare conventional sintering with additive manufacturing techniques for ß-TCP bioceramics, focusing on mechanical properties and biocompatibility. A "critical" bone defect requires surgical intervention beyond simple stabilization. Autologous bone grafting is the gold standard treatment for such defects, but it has its limitations. Alloplastic bone grafting with synthetic materials is becoming increasingly popular. The use of bone graft substitutes has increased significantly, and current research has focused on optimizing these substitutes, whereas this study compares two existing manufacturing techniques and the resulting ß-TCP implants. The 3D printed ß-TCP hybrid structure implant was fabricated from two components, a column structure and a freeze foam, which were sintered together. The conventionally fabricated ceramics were fabricated by casting. Both scaffolds were characterized for porosity, mechanical properties, and biocompatibility. The hybrid structure had an overall porosity of 74.4 ± 0.5%. The microporous ß-TCP implants had a porosity of 43.5 ± 2.4%, while the macroporous ß-TCP implants had a porosity of 61.81%. Mechanical testing revealed that the hybrid structure had a compressive strength of 10.4 ± 6 MPa, which was significantly lower than the microporous ß-TCP implants with 32.9 ± 8.7 MPa. Biocompatibility evaluations showed a steady increase in cell proliferation over time for all the ß-TCP implants, with minimal cytotoxicity. This study provides a valuable insight into the potential of additive manufacturing for ß-TCP bioceramics in the treatment of bone defects.

4.
J Mater Sci Mater Med ; 35(1): 40, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073605

RESUMEN

Bone infections are still a major problem in surgery. To avoid severe side effects of systemically administered antibiotics, local antibiotic therapy is increasingly being considered. Using a pressure-based method developed in our group, microporous ß-TCP ceramics, which had previously been characterized, were loaded with 2% w/v alginate containing 50 mg/mL clindamycin and 10 µg/mL rhBMP-2. Release experiments were then carried out over 28 days with changes of liquid at defined times (1, 2, 3, 6, 9, 14, 21 and 28d). The released concentrations of clindamycin were determined by HPLC and those of rhBMP-2 by ELISA. Continuous release (anomalous transport) of clindamycin and uniform release (Fick's diffusion) of BMP-2 were determined. The composites were biocompatible (live/dead, WST-I and LDH) and the released concentrations were all antimicrobially active against Staph. aureus. The results were very promising and clindamycin was detected in concentrations above the MIC as well as a constant rhBMP-2 release over the entire study period. Biocompatibility was also not impaired by either the antibiotic or the BMP-2. This promising approach can therefore be seen as an alternative to the common treatment with PMMA chains containing gentamycin, as the new composite is completely biodegradable and no second operation is necessary for removal or replacement.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Proteína Morfogenética Ósea 2 , Clindamicina , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/farmacocinética , Clindamicina/administración & dosificación , Clindamicina/química , Clindamicina/farmacocinética , Humanos , Materiales Biocompatibles/química , Staphylococcus aureus/efectos de los fármacos , Cinética , Fosfatos de Calcio/química , Animales , Ensayo de Materiales , Proteínas Recombinantes/química , Cerámica/química , Factor de Crecimiento Transformador beta , Alginatos/química , Implantes Absorbibles , Pruebas de Sensibilidad Microbiana
5.
BMC Biotechnol ; 24(1): 38, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831403

RESUMEN

BACKGROUND: Antibiotic-containing carrier systems are one option that offers the advantage of releasing active ingredients over a longer period of time. In vitro sustained drug release from a carrier system consisting of microporous ß-TCP ceramic and alginate has been reported in previous works. Alginate dialdehyde (ADA) gelatin gel showed both better mechanical properties when loaded into a ß-TCP ceramic and higher biodegradability than pure alginate. METHODS: Dual release of daptomycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21, and 28 by HPLC and ELISA. After release, the microbial efficacy of the daptomycin was verified and the biocompatibility of the composite was tested in cell culture. RESULTS: Daptomycin and the model compound FITC protein A (n = 30) were released from the composite over 28 days. A Daptomycin release above the minimum inhibitory concentration (MIC) by day 9 and a burst release of 71.7 ± 5.9% were observed in the loaded ceramics. Low concentrations of BMP-2 were released from the loaded ceramics over 28 days.


Asunto(s)
Antibacterianos , Proteína Morfogenética Ósea 2 , Fosfatos de Calcio , Cerámica , Daptomicina , Gelatina , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/metabolismo , Daptomicina/química , Daptomicina/farmacología , Gelatina/química , Cerámica/química , Antibacterianos/química , Antibacterianos/farmacología , Fosfatos de Calcio/química , Animales , Pruebas de Sensibilidad Microbiana , Ratones , Portadores de Fármacos/química , Liberación de Fármacos
6.
Front Bioeng Biotechnol ; 12: 1364536, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707504

RESUMEN

This study was designed to provide information on how the menisci change over the course of osteoarthritis, particularly with regard to their mechanical properties. The aim was to determine the difference between healthy menisci (fresh frozen meniscal transplants) and menisci harvested during total knee arthroplasty. The latter allows the grading of age-related and osteoarthritic changes in the menisci on macroscopic and microscopic levels. A total of 10 menisci from arthritic knee joints (medial) harvested during total knee arthroplasty were used and compared with 10 medial fresh frozen meniscal transplants. The mechanical measurements were carried out on a Mach-1 testing machine using indentation testing to determine the instantaneous modulus and the thickness of the menisci. The specimens were then embedded in paraffin, sectioned on a microtome, and stained with hematoxylin-eosin and safranin-O. All measurements were divided into the anterior horn, pars intermedia, and posterior horn. There was no significant difference in the instantaneous modulus for the posterior horn in the fresh frozen menisci with 0.27 ± 0.1 MPa compared to the arthritic menisci with 0.18 ± 0.03 MPa. No significant difference could be determined for the meniscus thicknesses. There was a significant difference in the safranin-O staining. There were also significant differences in the Pauli score: the arthrosis menisci showed a sum score that was, on average, four times higher than the sum score of the fresh frozen menisci. In the present study, it could be shown very well that there are significant differences in the mechanical properties as well as in the macroscopic and histopathological scores, such as the Pauli score, between the fresh frozen meniscus allografts considered healthy and osteoarthritic menisci resulting from total knee arthroplasty. With a degradation score of 3 (Pauli), the instantaneous modulus was reduced by more than 50% compared to healthy controls. More importantly, however, the fresh frozen menisci only show a grade 2 when converting the sum values into grades, where a grade 2 indicates slight degeneration. This is interesting because fresh frozen meniscus transplants were always considered healthy in previous publications and should, therefore, actually have a grade 1.

7.
BMC Biotechnol ; 24(1): 32, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750469

RESUMEN

ß-TCP ceramics are versatile bone substitute materials and show many interactions with cells of the monocyte-macrophage-lineage. The possibility of monocytes entering microporous ß-TCP ceramics has however not yet been researched. In this study, we used a model approach to investigate whether monocytes might enter ß-TCP, providing a possible explanation for the origin of CD68-positive osteoclast-like giant cells found in earlier works.We used flow chambers to unidirectionally load BC, PRP, or PPP into slice models of either 2 mm or 6 mm ß-TCP. Immunofluorescence for CD68 and live/dead staining was performed after the loading process.Our results show that monocytes were present in a relevant number of PRP and BC slices representing the inside of our 2 mm slice model and also present on the actual inside of our 6 mm model. For PPP, monocytes were not found beyond the surface in either model.Our results indicate the possibility of a new and so far neglected constituent in ß-TCP degradation, perhaps causing the process of ceramic degradation also starting from inside the ceramics as opposed to the current understanding. We also demonstrated flow chambers as a possible new in vitro model for interactions between blood and ß-TCP.


Asunto(s)
Fosfatos de Calcio , Cerámica , Monocitos , Monocitos/citología , Cerámica/química , Fosfatos de Calcio/química , Humanos , Sustitutos de Huesos/química , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Porosidad
8.
BMC Res Notes ; 17(1): 122, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685087

RESUMEN

Fluorescence analysis of ß-TCP ceramics is often used to describe cells found on said ceramics. However, we found, to our knowledge, so far undescribed artifacts which might sometimes be hard to differentiate from cells due to shape and fluorescence behavior. We tried prolonged ultrasound washing as well as Technovit 9100 fixation to reduce these artifacts. While untreated dowels showed no reduction in artifacts no matter the further treatment, Technovit fixation reduced the artifacts with even further reduction achieved by mechanical cleaning. As a consequence, scientists working with these dowels and likely even other types should try to avoid creating false positive results by considering the existence of these artifacts, checking additional filters for unusual fluorescence and by reducing them by using Technovit fixation when possible.


Asunto(s)
Artefactos , Fosfatos de Calcio , Microscopía Fluorescente , Microscopía Fluorescente/métodos , Fosfatos de Calcio/química , Humanos , Cerámica/química
9.
J Funct Biomater ; 15(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38391881

RESUMEN

Osteosynthesis in fracture treatment typically uses hardware that remains in the patient's body, which brings a permanent risk of negative side effects such as foreign body reactions or chronic inflammation. Bioabsorbable materials, however, can degrade and slowly be replaced by autologous bone tissue. A suitable material is requested to offer great biocompatibility alongside excellent mechanical properties and a reasonable corrosion rate. Zinc-silver alloys provide these characteristics, which makes them a promising candidate for research. This study investigated the aptitude as a bioabsorbable implant of a novel zinc-silver alloy containing 3.3 wt% silver (ZnAg3). Here, the tensile strength as well as the corrosion rate in PBS solution (phosphate buffered solution) of ZnAg3 were assessed. Furthermore, shear tests, including fatigue and quasi-static testing, were conducted with ZnAg3 and magnesium pins (MAGNEZIX®, Syntellix AG, Hannover, Germany), which are already in clinical use. The detected corrosion rate of 0.10 mm/year for ZnAg3 was within the proposed range for bioabsorbable implants. With a tensile strength of 237.5 ± 2.12 MPa and a shear strength of 144.8 ± 13.2 N, ZnAg3 satisfied the mechanical requirements for bioabsorbable implants. The fatigue testing did not show any significant difference between ZnAg3 and magnesium pins, whereas both materials withstood the cyclic loading. Thus, the results support the assumption that ZnAg3 is qualified for further investigation.

10.
Life (Basel) ; 14(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276271

RESUMEN

With the conventional mechanical rotation measurement of joints, only static measurements are possible with the patient at rest. In the future, it would be interesting to carry out dynamic rotation measurements, for example, when walking or participating in sports. Therefore, a measurement method with an elastic polymer-based capacitive measuring system was developed and validated. In our system, the measurement setup was comprised of a capacitive strain gauge made from a polymer, which was connected to a flexible printed circuit board. The electronics integrated into the printed circuit board allowed data acquisition and transmission. As the sensor strip was elongated, it caused a change in the spacing between the strain gauge's electrodes, leading to a modification in capacitance. Consequently, this alteration in capacitance enabled the measurement of strain. The measurement system was affixed to the knee by adhering the sensor to the skin in alignment with the anterolateral ligament (ALL), allowing the lower part of the sensor (made of silicone) and the circuit board to be in direct contact with the knee's surface. It is important to note that the sensor should be attached without any prior stretching. To validate the system, an in vivo test was conducted on 10 healthy volunteers. The dorsiflexion of the ankle was set at 2 Nm using a torque meter to eliminate any rotational laxity in the ankle. A strain gauge sensor was affixed to the Gerdii's tubercle along the course of the anterolateral ligament, just beneath the lateral epicondyle of the thigh. In three successive measurements, the internal rotation of the foot and, consequently, the lower leg was quantified with a 2 Nm torque. The alteration in the stretch mark's length was then compared to the measured internal rotation angle using the static measuring device. A statistically significant difference between genders emerged in the internal rotation range of the knee (p = 0.003), with female participants displaying a greater range of rotation compared to their male counterparts. The polymer-based capacitive strain gauge exhibited consistent linearity across all measurements, remaining within the sensor's initial 20% strain range. The comparison between length change and the knee's internal rotation angle revealed a positive correlation (r = 1, p < 0.01). The current study shows that elastic polymer-based capacitive strain gauges are a reliable instrument for the internal rotation measurement of the knee. This will allow dynamic measurements in the future under many different settings. In addition, significant gender differences in the internal rotation angle were seen.

11.
Biomedicines ; 11(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38137364

RESUMEN

BACKGROUND: The treatment of grafts with vancomycin for ligament reconstruction in knee surgery is the current standard. However, high antibiotic concentrations have chondrotoxic effects. PURPOSE: To test the chondrotoxicity of clindamycin, gentamicin and vancomycin in comparable concentrations. In vitro and in vivo effective concentrations hugely vary from drug to drug. To allow for comparisons between these three commonly used antibiotics, the concentration ranges frequently used in orthopedic surgical settings were tested. STUDY DESIGN: Controlled laboratory study. METHODS: Human cartilage from 10 specimens was used to isolate chondrocytes. The chondrocytes were treated with clindamycin (1 mg/mL and 0.5 mg/mL), gentamicin (10 mg/mL and 5 mg/mL) or vancomycin (10 mg/mL and 5 mg/mL), at concentrations used for preoperative infection prophylaxis in ligament surgery. Observations were taken over a period of 7 days. A control of untreated chondrocytes was included. To test the chondrotoxicity, a lactate dehydrogenase (LDH) test and a water-soluble tetrazolium salt (WST-1) assay were performed on days 1, 3 and 7. In addition, microscopic examinations were performed after fluorescence staining of the cells at the same time intervals. RESULTS: All samples showed a reasonable vitality of the cartilage cells after 72 h. However, clindamycin and gentamicin both showed higher chondrotoxicity in all investigations compared to vancomycin. After a period of 7 days, only chondrocytes treated with vancomycin showed reasonable vitality. CONCLUSIONS: The preoperative treatment of ligament grafts with vancomycin is the most reasonable method for infection prophylaxis, in accordance with the current study results regarding chondrotoxicity; however, clindamycin and gentamicin cover a wider anti-bacterial spectrum. CLINICAL RELEVANCE: The prophylactic antibiotic treatment of ligament grafts at concentrations of 5 mg/mL or 10 mg/mL vancomycin is justifiable and reasonable. In specific cases, even the use of gentamicin and clindamycin is appropriate.

12.
Materials (Basel) ; 16(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569926

RESUMEN

In the last several years, zinc and its alloys have come into focus as bioabsorbable materials by qualifying themselves with an excellent corrosion rate, mechanical properties, anti-bacterial effects. and considerable biocompatibility. In this study, the biocompatibility of zinc-silver alloys containing 3.3 wt% silver (ZnAg3) was assessed by evaluating their cell viability, the proliferation rate, and the cell toxicity. Two alloys were investigated in which one was phosphated and the other was non-phosphated. The alloys were tested on human osteoblasts (hOb), which are, to a large extent, responsible for bone formation and healing processes. The performance of the phosphated alloy did not differ significantly from the non-phosphated alloy. The results showed a promising biocompatibility with hOb for both alloys equally in all conducted assays, qualifying ZnAg3 for further investigations such as in vivo studies.

13.
Arch Orthop Trauma Surg ; 143(11): 6719-6729, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37592159

RESUMEN

PURPOSE: The ambition of the research group was to develop a sensor-based system that allowed the transfer of results with strain sensors applied to the knee joint. This system was to be validated in comparison to the current static mechanical measurement system. For this purpose, the internal rotation laxity of the knee joint was measured, as it is relevant for anterolateral knee laxity and anterior cruciate ligament (ACL) injury. METHODS: This is a noninvasive measurement method using strain sensors which are applied to the skin in the course of the anterolateral ligament. The subjects were placed in supine position. First the left and then the right leg were clinically examined sequentially and documented by means of an examination form. 11 subjects aged 21 to 45 years, 5 women and 6 men were examined. Internal rotation of the lower leg was performed with a torque of 2 Nm at a knee flexion angle of 30°. RESULTS: Comparison of correlation between length change and internal knee rotation angle showed a strong positive correlation (r = 1, p < 0.01). Whereas females showed a significant higher laxity vs. males (p = 0.003). CONCLUSIONS: The present study showed that the capacitive strain sensors can be used for reproducible measurement of anterolateral knee laxity. In contrast to the previous static systems, a dynamic measurement will be possible by this method in the future.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Inestabilidad de la Articulación , Masculino , Humanos , Femenino , Rango del Movimiento Articular , Cadáver , Inestabilidad de la Articulación/diagnóstico , Fenómenos Biomecánicos , Articulación de la Rodilla , Lesiones del Ligamento Cruzado Anterior/diagnóstico
14.
J Mater Sci Mater Med ; 34(8): 39, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37498466

RESUMEN

The aim of this study was to produce a composite of microporous ß-TCP filled with alginate-gelatin crosslinked hydrogel, clindamycin and bone morphogenetic protein (BMP-2) to prolong the drug-release behaviour for up to 28 days. The most promising alginate-di-aldehyde(ADA)-gelatin gel for drug release from microcapsules was used to fill microporous ß-TCP ceramics under directional flow in a special loading chamber. Dual release of clindamycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21 and 28 by high performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA). After release, the microbial efficacy of the clindamycin was checked and the biocompatibility of the composite was tested in cell culture. Clindamycin and the model substance FITC-protein A were released from microcapsules over 28 days. The clindamycin burst release was 43 ± 1%. For the loaded ceramics, a clindamycin release above the minimal inhibitory concentration (MIC) until day 9 and a burst release of 90.56 ± 2.96% were detected. BMP-2 was released from the loaded ceramics in low concentrations over 28 days. The release of active substances from ß-TCP and hydrogel have already been extensively studied. Directional flow loading is a special procedure in which the ceramic could act as a stabilizer in the bone and, as a biodegradable system, enables a single-stage surgical procedure. Whether ADA-gelatin gel is suitable for this procedure as a more biodegradable alternative to pure alginate or whether a dual release is possible in this composite has not yet been investigated.


Asunto(s)
Proteína Morfogenética Ósea 2 , Clindamicina , Alginatos/química , Proteína Morfogenética Ósea 2/química , Cápsulas , Cerámica/química , Gelatina/química , Hidrogeles/química , Humanos , Animales
15.
J Mech Behav Biomed Mater ; 144: 105951, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295386

RESUMEN

In the present work, we test four thin coatings for titanium implants, namely, bioglass, GB14, Beta-Tricalciumphosphate (ß-TCP) and hydroxyapatite (HA) with and without incorporated copper ions for their osteointegrative capacity. A rabbit drill hole model for time intervals up to 24 weeks was used in this study. Implant fixation was evaluated by measuring shear strength of the implant/bone interface. Quantitative histological analysis was performed for the measurements of bone contact area. Implants with and without copper ions were compared after 24 weeks. Thin coatings of GB14, HA or TCP on titanium implants demonstrated high shear strength during the entire test period of up to 24 weeks. Results confirmed osteointegrative properties of the coatings and did not reveal any negative effect of copper ions on osteointegration. The integration of copper in degradable osteoconductive coatings with a thickness of approx. 20 µm represents a promising method of achieving antibacterial shielding during the entire period of bone healing while at the same time improving osteointegration of the implants.


Asunto(s)
Cobre , Durapatita , Animales , Conejos , Titanio , Cerámica , Propiedades de Superficie , Materiales Biocompatibles Revestidos/farmacología , Oseointegración
16.
Bioengineering (Basel) ; 10(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36829750

RESUMEN

To enable rapid osteointegration in bioceramic implants and to give them osteoinductive properties, scaffolds with defined micro- and macroporosity are required. Pores or pore networks promote the integration of cells into the implant, facilitating the supply of nutrients and the removal of metabolic products. In this paper, scaffolds are created from ß-tricalciumphosphate (ß-TCP) and in a novel way, where both the micro- and macroporosity are adjusted simultaneously by the addition of pore-forming polymer particles. The particles used are 10-40 wt%, spherical polymer particles of polymethylmethacrylate (PMMA) (Ø = 5 µm) and alternatively polymethylsilsesquioxane (PMSQ) (Ø = 2 µm), added in the course of ß-TCP slurry preparation. The arrangement of hydrophobic polymer particles at the interface of air bubbles was incorporated during slurry preparation and foaming of the slurry. The foam structures remain after sintering and lead to the formation of macro-porosity in the scaffolds. Furthermore, decomposition of the polymer particles during thermal debindering results in the formation of an additional network of interconnecting micropores in the stabilizing structures. It is possible to adjust the porosity easily and quickly in a range of 1.2-140 µm with a relatively low organic fraction. The structures thus prepared showed no cytotoxicity nor negative effects on the biocompatibility.

17.
Biomedicines ; 10(12)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36551998

RESUMEN

In the literature, many studies have described the 3D printing of ceramic-based scaffolds (e.g., printing with calcium phosphate cement) in the form of linear structures with layer rotations of 90°, although no right angles can be found in the human body. Therefore, this work focuses on the adaptation of biological shapes, including a layer rotation of only 1°. Sample shapes were printed with calcium phosphate cement using a 3D Bioplotter from EnvisionTec. Both straight and wavy spokes were printed in a round structure with 12 layers. Depending on the strand diameter (200 and 250 µm needle inner diameter) and strand arrangement, maximum failure loads of 444.86 ± 169.39 N for samples without subsequent setting in PBS up to 1280.88 ± 538.66 N after setting in PBS could be achieved.

18.
Bioengineering (Basel) ; 9(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36550986

RESUMEN

With more than 1.5 million total knee and hip implants placed each year, there is an urgent need for a drug delivery system that can effectively support the repair of bone infections. Scaffolds made of natural biopolymers are widely used for this purpose due to their biocompatibility, biodegradability, and suitable mechanical properties. However, the poor processability is a bottleneck, as highly customizable scaffolds are desired. The aim of the present research is to develop a scaffold made of thermoplastic collagen (TC) using 3D printing technology. The viscosity of the material was measured using a rheometer. A 3D bioplotter was used to fabricate the scaffolds out of TC. The mechanical properties of the TC scaffolds were performed using tension/compression testing on a Zwick/Roell universal testing machine. TC shows better compressibility with increasing temperature and a decrease in dynamic viscosity (η), storage modulus (G'), and loss modulus (G″). The compressive strength of the TC scaffolds was between 3-10 MPa, depending on the geometry (cylinder or cuboid, with different infills). We have demonstrated for the first time that TC can be used to fabricate porous scaffolds by 3D printing in various geometries.

19.
J Funct Biomater ; 13(4)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36412879

RESUMEN

In this project, different calcification methods for collagen and collagen coatings were compared in terms of their applicability for 3D printing and production of collagen-coated scaffolds. For this purpose, scaffolds were printed from polycaprolactone PCL using the EnvisionTec 3D Bioplotter and then coated with collagen. Four different coating methods were then applied: hydroxyapatite (HA) powder directly in the collagen coating, incubation in 10× SBF, coating with alkaline phosphatase (ALP), and coating with poly-L-aspartic acid. The results were compared by ESEM, µCT, TEM, and EDX. HA directly in the collagen solution resulted in a pH change and thus an increase in viscosity, leading to clumping on the scaffolds. As a function of incubation time in 10× SBF as well as in ALP, HA layer thickness increased, while no coating on the collagen layer was apparently observed with poly-L-aspartic acid. Only ultrathin sections and TEM with SuperEDX detected nano crystalline HA in the collagen layer. Exclusively the incubation in poly-L-aspartic acid led to HA crystals within the collagen coating compared to all other methods where the HA layers formed in different forms only at the collagen layer.

20.
Polymers (Basel) ; 14(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35745901

RESUMEN

Polymer-based capacitive strain gauges are a novel and promising concept for measuring large displacements and strains in various applications. These novel sensors allow for high strain, well above the maximum values achieved with state-of-the-art strain gauges (Typ. 1%). In recent years, a lot of interest in this technology has existed in orthopedics, where the sensors have been used to measure knee laxity caused by a tear of the anterior cruciate ligament (ACL), and for other ligament injuries. The validation of this technology in the field has a very low level of maturity, as no fast, reproducible, and reliable manufacturing process which allows mass production of sensors with low cost exists. For this reason, in this paper, a new approach for the fabrication of polymer-based capacitive strain gauges is proposed, using polydimethylsiloxane (PDMS) as base material. It allows (1) the fast manufacturing of sensor batches with reproducible geometry, (2) includes a fabrication step for embedding rigid electrical contacts on the sensors, and (3) is designed to produce sensor batches in which the size, the number, and the position of the sensors can be adapted to the patient's anatomy. In the paper, the process repeatability and the robustness of the design are successfully proven. After 1000 large-strain elongation cycles, in the form of accelerated testing caused much higher strains than in the above-mentioned clinical scenario, the sensor's electrical contacts remained in place and the functionalities were unaltered. Moreover, the prototype of a patient customizable patch, embedding multiple sensors, was produced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA