Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Matrix Biol ; 131: 1-16, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750698

RESUMEN

Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6-/- hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.


Asunto(s)
Proteína ADAMTS1 , Proteína ADAMTS5 , Glipicanos , Corazón , Proteolisis , Versicanos , Animales , Ratones , Versicanos/metabolismo , Versicanos/genética , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS1/metabolismo , Proteína ADAMTS1/genética , Glipicanos/metabolismo , Glipicanos/genética , Corazón/crecimiento & desarrollo , Ratones Noqueados , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología
2.
Commun Biol ; 5(1): 1392, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539599

RESUMEN

Heart failure is a major cause of morbidity and mortality worldwide, and can result from pressure overload, where cardiac remodelling is characterized by cardiomyocyte hypertrophy and death, fibrosis, and inflammation. In failing hearts, transforming growth factor (TGF)ß drives cardiac fibroblast (CFB) to myofibroblast differentiation causing excessive extracellular matrix production and cardiac remodelling. New strategies to target pathological TGFß signalling in heart failure are needed. Here we show that the secreted glycoprotein ADAMTSL3 regulates TGFß in the heart. We found that Adamtsl3 knock-out mice develop exacerbated cardiac dysfunction and dilatation with increased mortality, and hearts show increased TGFß activity and CFB activation after pressure overload by aortic banding. Further, ADAMTSL3 overexpression in cultured CFBs inhibits TGFß signalling, myofibroblast differentiation and collagen synthesis, suggesting a cardioprotective role for ADAMTSL3 by regulating TGFß activity and CFB phenotype. These results warrant future investigation of the potential beneficial effects of ADAMTSL3 in heart failure.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Ratones , Animales , Ratones Noqueados , Dilatación , Remodelación Ventricular/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Factor de Crecimiento Transformador beta
3.
Sci Rep ; 11(1): 19757, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34611183

RESUMEN

Fibrosis accompanies most heart diseases and is associated with adverse patient outcomes. Transforming growth factor (TGF)ß drives extracellular matrix remodelling and fibrosis in the failing heart. Some members of the ADAMTSL (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motifs-like) family of secreted glycoproteins bind to matrix microfibrils, and although their function in the heart remains largely unknown, they are suggested to regulate TGFß activity. The aims of this study were to determine ADAMTSL2 levels in failing hearts, and to elucidate the role of ADAMTSL2 in fibrosis using cultured human cardiac fibroblasts (CFBs). Cardiac ADAMTSL2 mRNA was robustly increased in human and experimental heart failure, and mainly expressed by fibroblasts. Over-expression and treatment with extracellular ADAMTSL2 in human CFBs led to reduced TGFß production and signalling. Increased ADAMTSL2 attenuated myofibroblast differentiation, with reduced expression of the signature molecules α-smooth muscle actin and osteopontin. Finally, ADAMTSL2 mitigated the pro-fibrotic CFB phenotypes, proliferation, migration and contractility. In conclusion, the extracellular matrix-localized glycoprotein ADAMTSL2 was upregulated in fibrotic and failing hearts of patients and mice. We identified ADAMTSL2 as a negative regulator of TGFß in human cardiac fibroblasts, inhibiting myofibroblast differentiation and pro-fibrotic properties.


Asunto(s)
Proteínas ADAMTS/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Transducción de Señal , Proteínas ADAMTS/genética , Animales , Biomarcadores , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Proteínas de la Matriz Extracelular/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/patología , Humanos , Ratones , Ratas , Factor de Crecimiento Transformador beta/metabolismo
4.
JCI Insight ; 5(14)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32544089

RESUMEN

Infective endocarditis is a life-threatening infection of heart valves and adjacent structures characterized by vegetations on valves and other endocardial surfaces, with tissue destruction and risk of embolization. We used high-resolution mass spectrometry to define the proteome of staphylococcal and non-staphylococcal vegetations and Terminal Amine Isotopic Labeling of Substrates (TAILS) to define their proteolytic landscapes. These approaches identified over 2000 human proteins in staphylococcal and non-staphylococcal vegetations. Individual vegetation proteomes demonstrated comparable profiles of quantitatively major constituents that overlapped with serum, platelet, and neutrophil proteomes. Staphylococcal vegetation proteomes resembled one another more than the proteomes of non-staphylococcal vegetations. TAILS demonstrated extensive proteolysis within vegetations, with numerous previously undescribed cleavages. Several proteases and pathogen-specific proteins, including virulence factors, were identified in most vegetations. Proteolytic peptides in fibronectin and complement C3 were identified as potential infective endocarditis biomarkers. Overlap of staphylococcal and non-staphylococcal vegetation proteomes suggests a convergent thrombotic and immune response to endocardial infection by diverse pathogens. However, the differences between staphylococcal and non-staphylococcal vegetations and internal variance within the non-staphylococcal group indicate that additional pathogen- or patient-specific effects exist. Pervasive proteolysis of vegetation components may arise from vegetation-intrinsic proteases and destabilize vegetations, contributing to embolism.


Asunto(s)
Embolia/genética , Endocarditis/genética , Inmunidad Innata/genética , Infecciones Estafilocócicas/genética , Adulto , Anciano , Válvula Aórtica/metabolismo , Válvula Aórtica/microbiología , Válvula Aórtica/patología , Embolia/microbiología , Embolia/patología , Endocarditis/inmunología , Endocarditis/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Neutrófilos/patología , Proteolisis , Proteómica , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA