Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Contam Hydrol ; 264: 104363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805790

RESUMEN

A series of laboratory experiments are conducted to simulate the acidification and subsequent recovery of a sand aquifer exploited by in situ recovery (ISR) mining. A sulfuric acid solution (pH 2) is first injected into a column packed with sand from the Zoovch Ovoo uranium roll front deposit (Mongolia). Solutions representative of local groundwater or enriched in cations (Na+, Mg2+) are then circulated through the column to simulate the inflow of aquifer water. pH and major ion concentrations (Na+, Cl-, SO42-, Ca2+, Mg2+, K+) measured at the column outlet reproduce the overall evolution of porewater chemistry observed in the field. The presence of minor quantities of swelling clay minerals (≈6 wt% smectite) is shown to exert an important influence on the behavior of inorganic cations, particularly H+, via ion-exchange reactions. Numerical models that consider ion-exchange on smectite as the sole solid-solution interaction are able to reproduce variations in pH and cation concentrations in the column experiments. This highlights the importance of clay minerals in controlling H+ mobility and demonstrates that sand from the studied aquifer can be described to a first order as an ion-exchanger. The present study confirms the key role of clay minerals in controlling water chemistry in acidic environments through ion-exchange processes. In a context of managing the long-term environmental footprint of industrial and mining activities (ISR, acid mine drainage…), this work will bring insights for modeling choices and identification of key parameters to help operators to define their production and/or remediation strategies.


Asunto(s)
Silicatos de Aluminio , Cationes , Arcilla , Agua Subterránea , Minería , Arena , Arcilla/química , Concentración de Iones de Hidrógeno , Cationes/química , Agua Subterránea/química , Silicatos de Aluminio/química , Arena/química , Modelos Químicos , Modelos Teóricos , Ácidos Sulfúricos/química
2.
J Contam Hydrol ; 234: 103699, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32862071

RESUMEN

Hydrogeochemical models for the prediction of drainage quality from full-scale mine waste-rock piles are often parameterized using data from small-scale laboratory or field experiments of short duration. Yet, many model parameters and processes (e.g., sulfide-oxidation rates) vary strongly with the spatiotemporal dimensions of the experiment: the "upscaling" of prediction models remains a critical challenge for mine-waste management worldwide. Here, we investigate scale dependence in laboratory and field experiments that spanned orders-of-magnitude in size (i.e. 2 kg to 100,000 kg) at the Antamina mine in Peru. Normalized drainage mass loading rates systematically decreased with increasing scale, irrespective of waste-rock type. A process-based reactive-transport model was used to simulate observed rates and reproduce the geochemical composition of drainage across scales. Long-term trends in drainage quality could be quantitatively reproduced when the model was parameterized with mostly scale- and experiment-specific measured bulk properties or literature values, leaving geochemical rate coefficients the sole calibrated model parameters. Analysis of these fitted parameters revealed that the scale dependence of geochemical rates was largely explained by reactive mineral surface area. This work demonstrates that practical drainage quality predictions for full-scale waste-rock piles can be established from readily available bulk parameters determined at multiple scales.


Asunto(s)
Administración de Residuos , Minerales , Oxidación-Reducción , Perú
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...