Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Mol Metab ; 83: 101916, 2024 May.
Article En | MEDLINE | ID: mdl-38492843

OBJECTIVE: Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (Scd1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. The goal of this study is to further investigate the roles of Scd in adipocytes. METHOD: In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological Scd1 inhibition to dissect the enzyme's function in adipocyte physiology. RESULTS: Our study reveals that production of monounsaturated lipids by Scd1 is necessary for fusion of autophagosomes to lysosomes and that with a Scd1-deficiency, autophagosomes accumulate. In addition, Scd1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of Scd1-deficient adipocytes. CONCLUSION: This study demonstrates the indispensable role of Scd1 in adipocyte survival, with its inhibition in vivo triggering autophagy-dependent cell death and its depletion in vivo leading to the loss of bone marrow adipocytes.


Adipocytes , Autophagy , Fatty Acids, Monounsaturated , Mice, Knockout , Stearoyl-CoA Desaturase , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Animals , Mice , Adipocytes/metabolism , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Monounsaturated/pharmacology , Mice, Inbred C57BL , Lysosomes/metabolism , Cell Survival , 3T3-L1 Cells , Male , Lipid Metabolism , Autophagosomes/metabolism
2.
bioRxiv ; 2023 Oct 27.
Article En | MEDLINE | ID: mdl-37961537

Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (SCD1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological SCD1 inhibition, to investigate further the roles of SCD1 in adipocytes. Our study reveals that production of monounsaturated lipids by SCD1 is necessary for fusion of autophagosomes to lysosomes and that with a SCD1-deficiency, autophagosomes accumulate. In addition, SCD1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of SCD1-deficient adipocytes. Taken together, our results demonstrate that in vitro inhibition of SCD1 in adipocytes leads to autophagy-dependent cell death, and in vivo depletion leads to loss of bone marrow adipocytes.

3.
Adv Healthc Mater ; 11(8): e2102185, 2022 04.
Article En | MEDLINE | ID: mdl-35032365

As a process of cellular uptake, endocytosis, with gradient acidity in different endocytic vesicles, is vital for the homeostasis of intracellular nutrients and other functions. To study the dynamics of endocytic pathway, a membrane-anchored pH probe, ECGreen, is synthesized to visualize endocytic vesicles under structured illumination microscopy (SIM), a super-resolution technology. Being sensitive to acidity with increasing fluorescence at low pH, ECGreen can differentiate early and late endosomes as well as endolysosomes. Meanwhile, membrane anchoring not only improves the durability of ECGreen, but also provides an excellent anti-photobleaching property for long-time imaging with SIM. Moreover, by taking these advantages of ECGreen, a multidimensional analysis model containing spatial, temporal, and pH information is successfully developed for elucidating the dynamics of endocytic vesicles and their interactions with mitochondria during autophagy, and reveals a fast conversion of endosomes near the plasma membrane.


Endocytosis , Endosomes , Cell Membrane/metabolism , Endocytosis/physiology , Endosomes/metabolism , Endosomes/physiology , Fluorescence , Lysosomes/physiology
4.
Bioconjug Chem ; 32(4): 680-684, 2021 04 21.
Article En | MEDLINE | ID: mdl-33719402

PKH dyes, which are currently the most widely used fluorescent probes for extracellular vesicle (EV) labeling, have some limitations. For example, these dyes tend to aggregate, leading to formation of EV-like nanoparticles that can be taken up by cells. Moreover, it has been suggested that PKH dyes trigger an enlargement of EVs because of membrane fusion or intercalation. To overcome these limitations, we developed three novel extracellular vesicular-membrane-binding fluorescent probes-Mem dye-Green, Mem dye-Red, and Mem dye-Deep Red-for monitoring EV uptake into cells. The dyes contain a cyanine group as a fluorescent scaffold and amphiphilic moieties on the cyanine. The three dyes have different photophysical characteristics. To investigate the characteristics of the Mem dyes for EV labeling, we performed nanoparticle tracking, zeta potential measurements, and confocal microscopy. The dyes enable highly sensitive fluorescence imaging of EVs. They can also be used to observe EV dynamics in live cells. The Mem dyes show excellent EV labeling with no aggregation and less particle enlargement.


Extracellular Vesicles/chemistry , Fluorescent Dyes/chemistry , Lipid Metabolism , HeLa Cells , Humans , Microscopy, Confocal
...