Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 19(17): 2250-2257, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29770540

RESUMEN

In this work, we have investigated the potential of pristine and silver (Ag)-functionalized graphene oxide monolayers GO (GO-Ag) as efficient membranes for water filtration. Our first principles calculations based on density functional theory (DFT) reveal the hydrophilic nature of GO surfaces. The phonon frequency calculations within density functional perturbation theory (DFPT) confirmed the stability of GO sheets in aqueous media. Van der Waals-corrected binding energies of GO sheet towards heavy metals suggest that even pristine GO sheets are completely impermeable to various heavy metals like arsenic (As) and lead (Pb). However, compared to GO, the GO-Ag sheets have a much higher affinity towards the three amino acids histidine, phenyl-alanine and tyrosine, which are the main component of a bacteria cell wall. The GO-Ag sheet is found to be extremely efficient for bacteria inactivation.

2.
Z Med Phys ; 28(2): 134-141, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29030203

RESUMEN

BACKGROUND AND PURPOSE: The novel MatriXXFFF (IBA Dosimetry, Germany) detector is a new 2D ionization chamber detector array designed for patient specific IMRT-plan verification including flattening-filter-free (FFF) beams. This study provides a detailed analysis of the characterization and clinical evaluation of the new detector array. MATERIAL AND METHODS: The verification of the MatriXXFFF was subdivided into (i) physical dosimetric tests including dose linearity, dose rate dependency and output factor measurements and (ii) patient specific IMRT pre-treatment plan verifications. The MatriXXFFF measurements were compared to the calculated dose distribution of a commissioned treatment planning system by gamma index and dose difference evaluations for 18 IMRT-sequences. All IMRT-sequences were measured with original gantry angles and with collapsing all beams to 0° gantry angle to exclude the influence of the detector's angle dependency. RESULTS: The MatriXXFFF was found to be linear and dose rate independent for all investigated modalities (deviations ≤0.6%). Furthermore, the output measurements of the MatriXXFFF were in very good agreement to reference measurements (deviations ≤1.8%). For the clinical evaluation an average pixel passing rate for γ(3%,3mm) of (98.5±1.5)% was achieved when applying a gantry angle correction. Also, with collapsing all beams to 0° gantry angle an excellent agreement to the calculated dose distribution was observed (γ(3%,3mm)=(99.1±1.1)%). CONCLUSIONS: The MatriXXFFF fulfills all physical requirements in terms of dosimetric accuracy. Furthermore, the evaluation of the IMRT-plan measurements showed that the detector particularly together with the gantry angle correction is a reliable device for IMRT-plan verification including FFF.


Asunto(s)
Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada/instrumentación , Radioterapia de Intensidad Modulada/métodos , Calibración , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/normas
3.
Radiother Oncol ; 119(2): 351-6, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27090736

RESUMEN

BACKGROUND AND PURPOSE: Since IMRT-techniques lead to an increasingly complicated environment, a patient specific IMRT-plan verification is recommended. Furthermore, verifications during patient irradiation and 3D dose reconstruction have the potential to improve treatment delivery, accuracy and safety. This study provides a detailed investigation of the new transmission detector (DTD) Dolphin (IBA Dosimetry, Germany) for online dosimetry. MATERIALS AND METHODS: The clinical performance of the DTD was tested by dosimetric plan verification in 2D and 3D for 18 IMRT-sequences. In 2D, DTD measurements were compared to a pre-treatment verification method and a treatment planning system by gamma index and dose difference evaluations. In 3D, dose-volume-histogram (DVH) indices and gamma analysis were evaluated. Furthermore, the error detection ability was tested with leaf position uncertainties and deviations in the linear accelerator (LINAC) output. RESULTS: The DTD measurements were in excellent agreement to reference measurements in both 2D (γ3%,3mm=(99.7±0.6)% <1, ΔD±5%=(99.5±0.5)%) and 3D. Only a small dose underestimation (<2%) within the target volume was observed when analyzing DVH-indices. Positional errors of the leaf banks larger than 1mm and errors in LINAC output larger than 2% were identified with the DTD. CONCLUSIONS: The DTD measures the delivered dose with sufficient accuracy and is therefore suitable for clinical routine.


Asunto(s)
Neoplasias/radioterapia , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/instrumentación , Rayos gamma , Humanos , Aceleradores de Partículas , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
4.
Z Med Phys ; 26(3): 200-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26303190

RESUMEN

PURPOSE: Online verification and 3D dose reconstruction on daily patient anatomy have the potential to improve treatment delivery, accuracy and safety. One possible implementation is to recalculate dose based on online fluence measurements with a transmission detector (TD) attached to the linac. This study provides a detailed analysis of the influence of a new TD on treatment beam characteristics. METHODS: The influence of the new TD on surface dose was evaluated by measurements with an Advanced Markus Chamber (Adv-MC) in the build-up region. Based on Monte Carlo simulations, correction factors were determined to scale down the over-response of the Adv-MC close to the surface. To analyze the effects beyond dmax percentage depth dose (PDD), lateral profiles and transmission measurements were performed. All measurements were carried out for various field sizes and different SSDs. Additionally, 5 IMRT-plans (head & neck, prostate, thorax) and 2 manually created test cases (3×3cm(2) fields with different dose levels, sweeping gap) were measured to investigate the influence of the TD on clinical treatment plans. To investigate the performance of the TD, dose linearity as well as dose rate dependency measurements were performed. RESULTS: With the TD inside the beam an increase in surface dose was observed depending on SSD and field size (maximum of +11%, SSD = 80cm, field size = 30×30cm(2)). Beyond dmax the influence of the TD on PDDs was below 1%. The measurements showed that the transmission factor depends slightly on the field size (0.893-0.921 for 5×5cm(2) to 30×30cm(2)). However, the evaluation of clinical IMRT-plans measured with and without the TD showed good agreement after using a single transmission factor (γ(2%/2mm) > 97%, δ±3% >95%). Furthermore, the response of TD was found to be linear and dose rate independent (maximum difference <0.5% compared to reference measurements). CONCLUSIONS: When placed in the path of the beam, the TD introduced a slight, clinically acceptable increase of the skin dose even for larger field sizes and smaller SSDs and the influence of the detector on the dose beyond dmax as well as on clinical IMRT-plans was negligible. Since there was no dose rate dependency and the response was linear, the device is therefore suitable for clinical use. Only its absorption has to be compensated during treatment planning, either by the use of a single transmission factor or by including the TD in the incident beam model.


Asunto(s)
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentación , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/instrumentación , Radioterapia de Alta Energía/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Atención Dirigida al Paciente , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA