Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3940, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750036

RESUMEN

Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.


Asunto(s)
Desdiferenciación Celular , Diferenciación Celular , Células Epiteliales , Hepatocitos , Animales , Hepatocitos/citología , Hepatocitos/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ratones , Organoides/citología , Organoides/metabolismo , Transición Epitelial-Mesenquimal , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Células Cultivadas , Transducción de Señal , Vimentina/metabolismo , Vía de Señalización Hippo , Hígado/citología , Hígado/metabolismo , Ratones Endogámicos C57BL , Masculino , Técnicas de Cultivo de Célula/métodos
2.
Hepatol Commun ; 6(7): 1725-1740, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35220676

RESUMEN

Liver cancer is an aggressive cancer associated with a poor prognosis. Development of therapeutic strategies for liver cancer requires fundamental research using suitable experimental models. Recent progress in direct reprogramming technology has enabled the generation of many types of cells that are difficult to obtain and provide a cellular resource in experimental models of human diseases. In this study, we aimed to establish a simple one-step method for inducing cells that can form malignant human liver tumors directly from healthy endothelial cells using nonintegrating episomal vectors. To screen for factors capable of inducing liver cancer-forming cells (LCCs), we selected nine genes and one short hairpin RNA that suppresses tumor protein p53 (TP53) expression and introduced them into human umbilical vein endothelial cells (HUVECs), using episomal vectors. To identify the essential factors, we examined the effect of changing the amounts and withdrawing individual factors. We then analyzed the proliferation, gene and protein expression, morphologic and chromosomal abnormality, transcriptome, and tumor formation ability of the induced cells. We found that a set of six factors, forkhead box A3 (FOXA3), hepatocyte nuclear factor homeobox 1A (HNF1A), HNF1B, lin-28 homolog B (LIN28B), MYCL proto-oncogene, bHLH transcription factor (L-MYC), and Kruppel-like factor 5 (KLF5), induced direct conversion of HUVECs into LCCs. The gene expression profile of these induced LCCs (iLCCs) was similar to that of human liver cancer cells, and these cells effectively formed tumors that resembled human combined hepatocellular-cholangiocarcinoma following transplantation into immunodeficient mice. Conclusion: We succeeded in the direct induction of iLCCs from HUVECs by using nonintegrating episomal vectors. iLCCs generated from patients with cancer and healthy volunteers will be useful for further advancements in cancer research and for developing methods for the diagnosis, treatment, and prognosis of liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/genética , Línea Celular , Células Endoteliales , Humanos , Neoplasias Hepáticas/genética , Ratones , Plásmidos
3.
J Biosci Bioeng ; 132(4): 381-389, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34284947

RESUMEN

To improve cell production efficacy, it is important to evaluate cell conditions during culture. Extracellular vesicles (EVs) secreted from various cells are involved in stem cell differentiation. As EVs carry information about their source cells, we hypothesized that they may serve as a noninvasive index of cell conditions. We evaluated changes in EV morphology, concentration, and microRNA (miRNA) and protein expression in culture supernatants during the differentiation of induced pluripotent stem cells (iPSCs) into neural lineage cells, for application in regenerative medicine for Parkinson's disease. We observed EVs (50-150 nm) in culture supernatants of iPSCs and differentiated cells. The EVs expressed the exosome markers CD63, CD81, and CD9. Throughout differentiation, the EV concentration in the supernatants decreased, and EV miRNA and protein expression changed substantially. Especially, miR-106b, involved in neural stem cell differentiation and normal brain development, was considerably downregulated. CD63 expression correlated with the CORIN-positive cell rate, which is an index of differentiation. Thus, EV concentration and miRNA and protein expression may reflect the differentiation status of iPSCs. These findings pave the way for the development of novel and sensitive cell culture monitoring methods.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , MicroARNs , Diferenciación Celular , Humanos , MicroARNs/genética , Medicina Regenerativa
4.
Nat Commun ; 11(1): 5292, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087715

RESUMEN

Recent advances have enabled the direct induction of human tissue-specific stem and progenitor cells from differentiated somatic cells. However, it is not known whether human hepatic progenitor cells (hHepPCs) can be generated from other cell types by direct lineage reprogramming with defined transcription factors. Here, we show that a set of three transcription factors, FOXA3, HNF1A, and HNF6, can induce human umbilical vein endothelial cells to directly acquire the properties of hHepPCs. These induced hHepPCs (hiHepPCs) propagate in long-term monolayer culture and differentiate into functional hepatocytes and cholangiocytes by forming cell aggregates and cystic epithelial spheroids, respectively, under three-dimensional culture conditions. After transplantation, hiHepPC-derived hepatocytes and cholangiocytes reconstitute damaged liver tissues and support hepatic function. The defined transcription factors also induce hiHepPCs from endothelial cells circulating in adult human peripheral blood. These expandable and bipotential hiHepPCs may be useful in the study and treatment of human liver diseases.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Células Endoteliales/citología , Hepatocitos/citología , Células Madre/citología , Animales , Conductos Biliares/citología , Conductos Biliares/fisiología , Agregación Celular , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Células Endoteliales/fisiología , Femenino , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/fisiología , Factor Nuclear 3-gamma del Hepatocito/genética , Factor Nuclear 3-gamma del Hepatocito/fisiología , Factor Nuclear 6 del Hepatocito/genética , Factor Nuclear 6 del Hepatocito/fisiología , Hepatocitos/fisiología , Hepatocitos/trasplante , Xenoinjertos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Esferoides Celulares/citología , Esferoides Celulares/fisiología , Células Madre/fisiología
5.
Mol Cell ; 79(4): 660-676.e8, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32755593

RESUMEN

Specific combinations of two transcription factors (Hnf4α plus Foxa1, Foxa2, or Foxa3) can induce direct conversion of mouse fibroblasts into hepatocyte-like cells. However, the molecular mechanisms underlying hepatic reprogramming are largely unknown. Here, we show that the Foxa protein family members and Hnf4α sequentially and cooperatively bind to chromatin to activate liver-specific gene expression. Although all Foxa proteins bind to and open regions of closed chromatin as pioneer factors, Foxa3 has the unique potential of transferring from the distal to proximal regions of the transcription start site of target genes, binding RNA polymerase II, and co-traversing target genes. These distinctive characteristics of Foxa3 are essential for inducing the hepatic fate in fibroblasts. Similar functional coupling of transcription factors to RNA polymerase II may occur in other contexts whereby transcriptional activation can induce cell differentiation.


Asunto(s)
Factor Nuclear 3-gamma del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Hígado/citología , Hígado/fisiología , Activación Transcripcional , Animales , Sitios de Unión , Células Cultivadas , Reprogramación Celular/fisiología , Cromatina/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Regulación de la Expresión Génica , Factor Nuclear 3-gamma del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética , Ratones Endogámicos C57BL , Dominios Proteicos , Sitio de Iniciación de la Transcripción
6.
Genesis ; 57(11-12): e23334, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31513343

RESUMEN

Nanog is a core transcription factor specifically expressed not only in the pluripotent stem cells (PSCs), such as embryonic stem cells (ESCs), embryonic germ cells (EGCs), and induced PSCs (iPSCs), but also in the unipotent primordial germ cells (PGCs). Although Nanog promoter/enhancer regions are well characterized by in vitro analyses, direct correlations between the regulatory elements for Nanog expression and in vivo expression patterns of Nanog have not been fully clarified. In this study, we generated Nanog-RFP transgenic (Tg) mice in which expression of red fluorescent protein (RFP) is driven by a 5.2 kb Nanog promoter/enhancer region. As expected, RFP was expressed in the inner cell mass of blastocysts, ESCs, and iPSCs. However, RFP fluorescence was not observed in PGCs, although Nanog was expressed in PGCs. Because RFP fluorescence was visible in the PGC-derived pluripotent EGCs in culture, it was suggested that the reporter gene expression was specifically activated in PSCs. In conclusion, we have generated a novel Nanog-RFP Tg mouse line that can selectively tag PSCs over unipotent PGCs.


Asunto(s)
Proteína Homeótica Nanog/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/patología , Animales , Células Cultivadas , Células Madre Embrionarias/metabolismo , Células Germinativas/metabolismo , Proteínas de Homeodominio/genética , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Transgénicos , Proteína Homeótica Nanog/fisiología , Factores de Transcripción/genética
7.
Cell Rep ; 25(1): 183-198, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30282027

RESUMEN

Recent progress in direct lineage reprogramming has enabled the generation of induced hepatocyte-like (iHep) cells and revealed their potential as an alternative to hepatocytes for medical applications. However, the hepatic functions of iHep cells are insufficient compared with those of primary hepatocytes. Here, we show that cell-aggregate formation can rapidly induce growth arrest and hepatic maturation of iHep cells through activation of Hippo signaling. During formation of iHep cell aggregates, Yap inactivation is induced by actin reorganization and intercellular adhesion, leading to upregulation of Hnf1α expression in the absence of the Yap/Tead/Chd4 transcriptional repressor unit. Hnf1α then acts as a central transcription factor that regulates liver-enriched gene expression in iHep cell aggregates and induces functional differentiation of iHep cells. Moreover, iHep cell aggregates efficiently reconstitute injured liver tissues and support hepatic function after transplantation. Thus, iHep cell aggregates may provide insights into basic research and potential therapies for liver diseases.


Asunto(s)
Hepatocitos/citología , Hepatocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Agregación Celular/fisiología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Células Cultivadas , Factor Nuclear 1-alfa del Hepatocito , Vía de Señalización Hippo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Transcriptoma , Regulación hacia Arriba
8.
Stem Cell Reports ; 7(6): 1130-1139, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27916538

RESUMEN

Hepatic progenitor cells (HPCs) appear in response to several types of chronic injury in the human and rodent liver that often develop into liver fibrosis, cirrhosis, and primary liver cancers. However, the contribution of HPCs to the pathogenesis and progression of such liver diseases remains controversial. HPCs are generally defined as cells that can differentiate into hepatocytes and cholangiocytes. In this study, however, we found that HPCs isolated from the chronically injured liver can also give rise to myofibroblasts as a third type of descendant. While myofibroblast differentiation from HPCs is not significant in culture, during tumor development, HPCs can contribute to the formation of the tumor microenvironment by producing abundant myofibroblasts that might form a niche for tumor growth and survival. Thus, HPCs can be redefined as cells with a potential for differentiation into myofibroblasts that is specifically activated during tumor formation.


Asunto(s)
Hígado/citología , Miofibroblastos/citología , Células Madre/citología , Microambiente Tumoral , Animales , Recuento de Células , Diferenciación Celular , Separación Celular , Células Cultivadas , Células Clonales , Hígado/embriología , Ratones Endogámicos C57BL , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/metabolismo
9.
Sci Rep ; 6: 34691, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27698452

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is a malignant epithelial neoplasm composed of cells resembling cholangiocytes that line the intrahepatic bile ducts in portal areas of the hepatic lobule. Although ICC has been defined as a tumor arising from cholangiocyte transformation, recent evidence from genetic lineage-tracing experiments has indicated that hepatocytes can be a cellular origin of ICC by directly changing their fate to that of biliary lineage cells. Notch signaling has been identified as an essential factor for hepatocyte conversion into biliary lineage cells at the onset of ICC. However, the mechanisms underlying Notch signal activation in hepatocytes remain unclear. Here, using a mouse model of ICC, we found that hepatic macrophages called Kupffer cells transiently congregate around the central veins in the liver and express the Notch ligand Jagged-1 coincident with Notch activation in pericentral hepatocytes. Depletion of Kupffer cells prevents the Notch-mediated cell-fate conversion of hepatocytes to biliary lineage cells, inducing hepatocyte apoptosis and increasing mortality in mice. These findings will be useful for uncovering the pathogenic mechanism of ICC and developing prevenient and therapeutic strategies for this refractory disease.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Hepatocitos/patología , Proteína Jagged-1/genética , Macrófagos del Hígado/patología , Receptor Notch1/genética , Animales , Neoplasias de los Conductos Biliares/inducido químicamente , Neoplasias de los Conductos Biliares/mortalidad , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/efectos de los fármacos , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Carcinógenos/toxicidad , Comunicación Celular , Desdiferenciación Celular/efectos de los fármacos , Colangiocarcinoma/inducido químicamente , Colangiocarcinoma/mortalidad , Colangiocarcinoma/patología , Ácido Clodrónico/farmacología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Proteína Jagged-1/metabolismo , Macrófagos del Hígado/efectos de los fármacos , Macrófagos del Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Piridinas/toxicidad , Receptor Notch1/metabolismo , Transducción de Señal , Análisis de Supervivencia , Tioacetamida/toxicidad
10.
Am J Pathol ; 184(5): 1468-78, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24594350

RESUMEN

The proliferation of biliary lineage cells in chronic liver diseases, which leads to formation of primitive ductules in portal areas of the hepatic lobule, may be important not only for liver regeneration, but also for initiation of liver cancer. Thus, understanding how these primitive ductular cells emerge and proliferate in chronically injured liver holds promise for development of therapeutic strategies for liver diseases. However, the origin of these primitive ductular cells remains controversial. Here, we use a method for genetic lineage tracing to determine the origin of cells that form primitive ductules in a mouse model of chronic liver injury. Our results show that hepatocytes, rather than cholangiocytes, are the major source of cells for the primitive ductules formed in response to chronic liver damage. Moreover, activation of the Notch-Hes1 signaling axis is important for conversion of hepatocytes into primitive ductular cells in chronically injured liver. These findings should be valuable in elucidating the mechanism of liver regeneration associated with the fate-conversion of hepatocytes and in developing therapeutic strategies for liver diseases.


Asunto(s)
Conductos Biliares/patología , Hepatocitos/patología , Hígado/lesiones , Hígado/patología , Albúminas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Conductos Biliares/fisiopatología , Recuento de Células , Linaje de la Célula , Enfermedad Crónica , Modelos Animales de Enfermedad , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Proteínas de Homeodominio/metabolismo , Hígado/fisiopatología , Fallo Hepático Agudo/patología , Fallo Hepático Agudo/fisiopatología , Regeneración Hepática , Ratones Endogámicos C57BL , Piridinas , Receptores Notch/metabolismo , Transducción de Señal , Factor de Transcripción HES-1
11.
J Clin Invest ; 122(11): 3914-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23023701

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is the second most common primary malignancy in the liver. ICC has been classified as a malignant tumor arising from cholangiocytes; however, the co-occurrence of ICC and viral hepatitis suggests that ICC originates in hepatocytes. In order to determine the cellular origin of ICC, we used a mouse model of ICC in which hepatocytes and cholangiocytes were labeled with heritable, cell type­specific reporters. Our studies reveal that ICC is generated by biliary lineage cells derived from hepatocytes, rather than cholangiocytes. Additionally, we found that Notch activation is critical for hepatocyte conversion into biliary lineage cells during the onset of ICC and its subsequent malignancy and progression. These findings will help to elucidate the pathogenic mechanism of ICC and to develop therapeutic strategies for this refractory disease.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Colangiocarcinoma/metabolismo , Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Notch/metabolismo , Animales , Neoplasias de los Conductos Biliares , Conductos Biliares Intrahepáticos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Colangiocarcinoma/etiología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Genes Reporteros , Hepatitis Viral Animal/metabolismo , Hepatitis Viral Animal/patología , Hepatocitos/patología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/genética , Receptores Notch/genética
12.
Nature ; 475(7356): 390-3, 2011 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-21716291

RESUMEN

The location and timing of cellular differentiation must be stringently controlled for proper organ formation. Normally, hepatocytes differentiate from hepatic progenitor cells to form the liver during development. However, previous studies have shown that the hepatic program can also be activated in non-hepatic lineage cells after exposure to particular stimuli or fusion with hepatocytes. These unexpected findings suggest that factors critical to hepatocyte differentiation exist and become activated to induce hepatocyte-specific properties in different cell types. Here, by screening the effects of twelve candidate factors, we identify three specific combinations of two transcription factors, comprising Hnf4α plus Foxa1, Foxa2 or Foxa3, that can convert mouse embryonic and adult fibroblasts into cells that closely resemble hepatocytes in vitro. The induced hepatocyte-like (iHep) cells have multiple hepatocyte-specific features and reconstitute damaged hepatic tissues after transplantation. The generation of iHep cells may provide insights into the molecular nature of hepatocyte differentiation and potential therapies for liver diseases.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Hepatocitos/citología , Animales , Diferenciación Celular/genética , Células Cultivadas , Embrión de Mamíferos/citología , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Factor Nuclear 3-gamma del Hepatocito/genética , Factor Nuclear 3-gamma del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Hepatocitos/trasplante , Hidrolasas/deficiencia , Hígado/citología , Hígado/enzimología , Hígado/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
13.
Proc Natl Acad Sci U S A ; 108(27): 11175-80, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21690373

RESUMEN

Liver regeneration proceeds under the well-orchestrated control of multiple transcription factors that lead hepatocytes to reenter the cell cycle, proliferate, and renew quiescence. Here, we found an important role of the zinc-finger transcription factor Snail in liver regeneration. Snail was typically expressed in quiescent adult hepatocytes, but was rapidly degraded when the liver needed to regenerate itself. Decreased levels of Snail induced DNA synthesis in hepatocytes through up-regulation of cell cycle-related proteins. Snail degradation was dependent on phosphorylation by glycogen synthase kinase (GSK)-3ß, whose quantity and activity were immediately increased after loss of liver mass or hepatic injury. Inactivation of GSK-3ß resulted in suppression of Snail degradation and DNA synthesis in hepatocytes, leading to impaired liver growth during regeneration. This GSK-3ß-dependent Snail degradation occurred as a result of cytokine, growth factor, and bile acid signals that are known to drive liver regeneration. Thus, GSK-3ß-dependent Snail degradation acts as a fundamental cue for the initiation of hepatocyte proliferation in liver regeneration.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Regeneración Hepática/fisiología , Factores de Transcripción/metabolismo , Animales , Cadherinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , ADN/biosíntesis , Expresión Génica , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
14.
Lab Invest ; 90(10): 1425-36, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20714325

RESUMEN

The homeostatic renewal of the intestinal epithelium depends on regulation of proliferation and differentiation of stem/progenitor cells residing in a specific site, called the 'stem cell niche.' Thus, the reconstitution of the microenvironment of the stem cell niche may allow us to maintain intestinal stem/progenitor cells in culture for a longer period. Although epidermal growth factor (EGF) is conventionally used as a supplement of intestinal epithelial cell culture, little has been known regarding a role of EGF signaling in a stem/progenitor cell population. In this study, we attempted to clarify the role of EGF signaling in intestinal stem/progenitor cells, and to establish a culture system in which these cells could be maintained with normal differentiation potential. We first examined the expression pattern of EGF and its receptor, EGFR, and inhibited EGF signaling in mouse intestines. Next, we cultured intestinal cells isolated from mouse and human intestines in the presence of EGF and analyzed the function of EGF signaling in cultured cells. In both embryonic and adult mouse intestines, EGFR and EGF were expressed in immature epithelial cells and adjacent fibroblasts, respectively, and EGF signaling was essential to activate proliferation and inhibit apoptosis of intestinal stem/progenitor cells. Activation of EGF signaling also stimulated proliferation and suppressed apoptosis, both of which are necessary to maintain mouse and human intestinal epithelial cells in culture. Moreover, in these cultured epithelial cells, putative intestinal stem/progenitor cells persisted longer, and gave rise to different types of differentiated intestinal epithelial cells. We conclude that EGF signaling is indispensable for activation of proliferation and inhibition of unexpected cell death, not only in the intestinal stem cell niche, but also in culture of primitive intestinal epithelial cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Factor de Crecimiento Epidérmico/metabolismo , Transducción de Señal , Células Madre , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Receptores ErbB/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/embriología , Ratones , Nicho de Células Madre , Células Madre/citología , Células Madre/metabolismo
15.
Hepatology ; 48(6): 1964-78, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18837044

RESUMEN

UNLABELLED: The adult liver progenitor cells appear in response to several types of pathological liver injury, especially when hepatocyte replication is blocked. These cells are histologically identified as cells that express cholangiocyte markers and proliferate in the portal area of the hepatic lobule. Although these cells play an important role in liver regeneration, the precise characterization that determines these cells as self-renewing bipotent primitive hepatic cells remains to be shown. Here we attempted to isolate cells that express a cholangiocyte marker from the adult mouse liver and perform single cell-based analysis to examine precisely bilineage differentiation potential and self-renewing capability of these cells. Based on the results of microarray analysis and immunohistochemistry, we used an antibody against CD133 and isolate CD133(+) cells via flow cytometry. We then cultured and propagated isolated cells in a single cell culture condition and examined their potential for proliferation and differentiation in vitro and in vivo. Isolated cells that could form large colonies (LCs) in culture gave rise to both hepatocytes and cholangiocytes as descendants, while maintaining undifferentiated cells by self-renewing cell divisions. The clonogenic progeny of an LC-forming cell is capable of reconstituting hepatic tissues in vivo by differentiating into fully functional hepatocytes. Moreover, the deletion of p53 in isolated LC-forming cells resulted in the formation of tumors with some characteristics of hepatocellular carcinoma and cholangiocarcinoma upon subcutaneous injection into immunodeficient mutant mice. These data provide evidence for the stem cell-like capacity of isolated and clonally cultured CD133(+) LC-forming cells. CONCLUSION: Our method for prospectively isolating hepatic progenitor cells from the adult mouse liver will facilitate study of their roles in liver regeneration and carcinogenesis.


Asunto(s)
Hepatocitos/citología , Regeneración Hepática/fisiología , Hígado/citología , Células Madre/citología , Antígeno AC133 , Animales , Antígenos CD/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Clonación de Organismos , Citometría de Flujo , Glicoproteínas/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Péptidos/metabolismo , Células Madre/metabolismo , Células Madre/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Development ; 135(9): 1589-95, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18356246

RESUMEN

Although the T-box family of transcription factors function in many different tissues, their role in liver development is unknown. Here we show that Tbx3, the T-box gene that is mutated in human ulnar-mammary syndrome, is specifically expressed in multipotent hepatic progenitor cells, ;hepatoblasts', isolated from the developing mouse liver. Tbx3-deficient hepatoblasts presented severe defects in proliferation as well as uncontrollable hepatobiliary lineage segregation, including the promotion of cholangiocyte (biliary epithelial cell) differentiation, which thereby caused abnormal liver development. Deletion of Tbx3 resulted in the increased expression of the tumor suppressor p19(ARF) (Cdkn2a), which in turn induced a growth arrest in hepatoblasts and activated a program of cholangiocyte differentiation. Thus, Tbx3 plays a crucial role in controlling hepatoblast proliferation and cell-fate determination by suppressing p19(ARF) expression and thereby promoting liver organogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/biosíntesis , Hígado/citología , Células Madre Multipotentes/citología , Proteínas de Dominio T Box/fisiología , Animales , Proliferación Celular , Células Cultivadas , Hígado/embriología , Ratones , Células Madre Multipotentes/fisiología
17.
Mol Cell Biol ; 25(10): 4138-49, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15870284

RESUMEN

ABCA5 is a member of the ABC transporter A subfamily, and a mouse orthologue (mABCA5) in newborn mouse brain and neural cells was identified by reverse transcription-PCR. Full-length cDNA cloning revealed that mABCA5 consists of 1,642 amino acid residues and that its putative structure is that of a full-type ABC transporter having two sets of six transmembrane segments and a nucleotide binding domain. Immunohistochemical studies revealed that mABCA5 is expressed in brain, lung, heart, and thyroid gland. A subcellular localization analysis showed that mABCA5 is a resident of lysosomes and late endosomes. Abca5(-)(/)(-) mice exhibited symptoms similar to those of several lysosomal diseases in heart, although no prominent abnormalities were found in brain or lung. They developed a dilated cardiomyopathy-like heart after reaching adulthood and died due to depression of the cardiovascular system. In addition, Abca5(-)(/)(-) mice also exhibited exophthalmos and collapse of the thyroid gland. Therefore, ABCA5 is a protein related to a lysosomal disease and plays important roles, especially in cardiomyocytes and follicular cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Transportadoras de Casetes de Unión a ATP/química , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Exoftalmia/genética , Exoftalmia/metabolismo , Exoftalmia/patología , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Miocardio/metabolismo , Miocardio/patología , Transporte de Proteínas , ARN Mensajero/análisis , ARN Mensajero/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo
18.
J Org Chem ; 68(11): 4586-9, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12762779

RESUMEN

Aromatic acyl radicals generated from S-(4-cyano)phenyl 2-alkenylthiobenzoate by a nickel complex catalyzed electroreduction undergo 5- and 6-exo cyclization to give 1-indanone and dihydro-1-naphthalenone derivatives, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA