Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Appl Toxicol ; 44(1): 96-106, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37496236

RESUMEN

Microtubule polymerization inhibitors (MPIs) have long been used as anticancer agents because they inhibit mitosis. Microtubules are thought to play an important role in the migration of tumor cells and the formation of tumor blood vessels, and new MPIs are being developed. Many clinical trials of novel MPIs have been conducted in humans, while some clinical studies in dogs have also been reported. More attempts to apply MPIs not only in humans but also in the veterinary field are expected to be made in the future. Meanwhile, MPIs have a risk of cardiotoxicity. In this paper, we review findings on the pharmacological effects and cardiotoxicity of MPIs, as well as the mechanisms of their cardiotoxicity. Cardiotoxicity of MPIs involves not only the direct effects of MPIs on cardiomyocytes but also their effects on vascular function. For example, hypertension induced by impaired vascular function also contributes to the exacerbation of myocardial damage, and blood pressure control may be useful in reducing cardiotoxicity. By combined administration of MPIs and other anticancer agents, MPI efficacy may be enhanced, thereby potentially allowing to keep MPI dosage low. Measurement of myocardial injury markers in blood and echocardiography may be useful for monitoring cardiotoxicity. In particular, two-dimensional speckle tracking may have high sensitivity for the early detection of MPI-induced cardiac dysfunction. The exploration of the potential of new MPIs while understanding their toxicity and how to deal with them will lead to the further development of cancer chemotherapy.


Asunto(s)
Antineoplásicos , Cardiopatías , Neoplasias , Humanos , Animales , Perros , Cardiotoxicidad , Polimerizacion , Neoplasias/tratamiento farmacológico , Antineoplásicos/toxicidad , Cardiopatías/inducido químicamente
2.
Eur J Neurosci ; 58(11): 4282-4297, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37933572

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe progressive neuromuscular disorder that causes cardiac and respiratory failure. Patients with DMD have tachycardia and autonomic nervous dysfunction at a young age, which can potentially worsen cardiorespiratory function. Therefore, we hypothesised that plasticity occurs in neurons of the cardiorespiratory brainstem nucleus (nucleus tractus solitarius [NTS]) due to DMD, thus affecting neuronal regulation because afferent information from cardiorespiratory organs changes with disease progression. Patch-clamp experiments were performed on second-order NTS neurons from Dmd-mutated (Dm) rats that showed no functional dystrophin protein expression, as confirmed by immunohistochemistry. NTS neurons are classified into two electrophysiological phenotypes: one showing a delayed onset of spiking from hyperpolarised membrane potentials, namely, delayed-onset spiking (DS)-type neurons, and the other showing a rapid onset, namely, rapid-onset spiking-type neurons. Neuroplasticity mainly occurs in DS-type neurons in Dm rats and is characterised by blunted neuronal excitability accompanied by reduced outward currents and a facilitatory effect on synaptic transmission, that is, an increased frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) without changes in the amplitude and an increased amplitude of tractus solitarius-evoked EPSCs without changes in the paired-pulse ratio. Although we cannot rule out the possibility that the neuroplastic changes observed in Dm rats were caused by dystrophin deficiency in the neurons themselves, the plasticity could be caused by cardiorespiratory deterioration and/or adaptation in DMD patients.


Asunto(s)
Distrofina , Núcleo Solitario , Animales , Humanos , Ratas , Distrofina/genética , Distrofina/metabolismo , Distrofina/farmacología , Fenómenos Electrofisiológicos , Neuronas/fisiología , Núcleo Solitario/metabolismo , Transmisión Sináptica/fisiología
3.
Exp Anim ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914289

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy caused by dystrophin mutations. Inevitable progressive cardiomyopathy is a current leading cause of premature death although respiratory management has improved the prognosis of patients with DMD. Recent evidence shows that reducing the heart rate is expected as one of the promising strategies for heart failure treatment, but administering a sufficient dose of ß-blocker for patients with DMD with tachycardia is difficult because of their low blood pressure (BP). Thus, this study aimed to clarify the role of ivabradine, which suppresses cardiac sinus node pacemakers without decreasing BP, in ameliorating cardiomyopathy progression in a rat model with DMD. A trans-oral single ivabradine administration demonstrated a declined dose-dependent heart rate without any significant BP reduction. Trans-gastric repeated administrations of 5 mg/kg of ivabradine twice a day for 3 months showed ameliorated cardiomyopathy in DMD rats based on echocardiography and histopathological observations (left ventricular dysfunction, right ventricular dysfunction, and myocardial fibrosis) as compared with vehicle administration. Our finding indicates that ivabradine is expected as another treatment choice for patients with DMD having tachycardia.

4.
J Toxicol Pathol ; 36(3): 151-158, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37577366

RESUMEN

Combretastatin A4 disodium phosphate (CA4DP) is a prodrug of combretastatin A4 (CA4), a microtubule-disassembling agent that exhibits antitumor effects by inhibiting tumor cell proliferation and inducing morphological changes and apoptosis in vascular endothelial cells in tumors. However, cardiotoxicity induced by ischemia and hypertension is a severe adverse event. In this study, we focused on the fact that phosphodiesterase (PDE) 5 inhibitors dilate the heart and peripheral blood vessels and aimed to investigate whether co-administration of tadalafil, a PDE5 inhibitor, can attenuate cardiotoxicity without altering the antitumor effect of CA4DP. To investigate cardiotoxicity, CA4DP and/or tadalafil were administered to rats, and blood pressure, echocardiography, histopathology, and cGMP concentration in the myocardium were examined. Administration of CA4DP increased systolic blood pressure, decreased cardiac function, lowered cGMP levels in the myocardium, and led to necrosis of myocardial cells. Co-administration of tadalafil attenuated these CA4DP-induced changes. To investigate the antitumor effect, canine mammary carcinoma cell lines (CHMp-13a) and human umbilical vein endothelial cells were cultured with CA4 and/or tadalafil, and cell proliferation and endothelial vascular tube disruption were examined. CHMp-13a cells were transplanted into nude mice and treated with CA4DP and/or tadalafil. CA4-induced inhibition of cell proliferation and disruption of the endothelial vascular tube were not affected by co-treatment with tadalafil, and the antitumor effects of CA4DP in xenograft mice were not reduced by co-administration of tadalafil. These results revealed that myocardial damage induced by CA4DP was attenuated by co-administration of tadalafil while maintaining antitumor efficacy.

5.
J Equine Sci ; 34(2): 55-59, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37405067

RESUMEN

The Criollo is an Argentine horse breed with a calm temperament. Although its temperament is considered to be related to its neurophysiological characteristics, the details of this are unknown. Therefore, we analyzed the heart rate variability in Criollos as a preliminary study to deepen the neurophysiological understanding of their autonomic function. Electrocardiograms were recorded from Criollos and Thoroughbreds, and the power spectrum of heart rate variability was analyzed. Compared with Thoroughbreds, Criollos showed (i) a significantly higher high-frequency component, which is an index of parasympathetic nerve activity, and (ii) tendency toward a lower ratio of low- to high-frequency power, which is an index of the autonomic balance. These results revealed that parasympathetic nerves might be more active in Criollos compared with Thoroughbreds.

6.
Biomed Pharmacother ; 160: 114353, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36736274

RESUMEN

Combretastatin A4 (CA4) inhibits microtubule polymerization, and clinical trials of the prodrug, CA4 disodium phosphate (CA4DP), as an anti-cancer agent have been conducted. However, CA4DP has not been marketed to date because the margin between the effective dose and the cardiotoxic dose is insufficient. Meanwhile, bromodomain-containing protein 4 (BRD4) has been reported to be required for recovery from mitotic arrests induced by anti-microtubule drugs. BRD4 has also been reported to be involved in the progression of heart failure. Therefore, we hypothesized that the combined use of CA4DP with BRD4 inhibitors can enhance the antitumor effect and attenuate CA4DP-induced cardiotoxicity. In this study, the antitumor effect and cardiotoxicity caused by the co-administration of CA4DP with JQ1, a BRD4 inhibitor, were evaluated. CA4 or JQ1 alone reduced the viability of cultured canine mammary tumor cells (CHMp-13a). Viability was further reduced by co-administration, through the suppression of c-Myc. BRD4 positivity in CHMp-13a cytoplasm showed a significant increase when treated with CA4 alone, while the increase was not significant following co-administration. In CHMp-13a xenograft-transplanted mice, co-administration of CA4DP and JQ1 suppressed tumor growth significantly. In CA4DP-induced cardiac injury model rats, echocardiography showed a CA4DP-induced decrease in cardiac function and histopathology showed cardiomyocyte necrosis. Meanwhile, these cardiac changes tended to be milder following the co-administration of CA4DP and JQ1. These results suggest that CA4DP-JQ1 co-administration enhances the antitumor effect of CA4DP while attenuating its cardiotoxicity and therefore potentially open the doors to the development of a novel cancer chemotherapy with reduced cardiotoxicity risks.


Asunto(s)
Estilbenos , Factores de Transcripción , Animales , Humanos , Perros , Ratones , Ratas , Factores de Transcripción/metabolismo , Proteínas Nucleares/metabolismo , Cardiotoxicidad/tratamiento farmacológico , Estilbenos/farmacología , Estilbenos/uso terapéutico , Proteínas de Ciclo Celular , Moduladores de Tubulina/farmacología , Azepinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Proliferación Celular
7.
Life (Basel) ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430992

RESUMEN

Stroke is consistently one of the top ten causes of morbidity and mortality globally, whose outcomes are quite variable, necessitating case-specific management. Prophylactic diets before the onset of stroke have been implicated to work. In this research, the effects of virgin coconut oil (VCO) on stroke were evaluated using a stroke-prone spontaneously hypertensive rat (SHRSP) model. Eight-week-old SHRSPs were subjected to the repeated oral administration (5 mL/kg/day) of either 1% Tween 80 (group A) or VCO (group B). An early stroke onset was observed due to hypertension that was aggravation by the administration of 1% NaCl in water ad libitum. The following data were collected: the days until stroke occurred, the survival rate until the animal died, and blood pressure (BP) every two weeks using the tail-cuff method. After necropsy, the organs were harvested, and the brain was processed for a routine histopathological analysis. VCO delayed the incidence of it and prolonged their survival. Compared to group A, group B showed a significantly lowered BP by 20 mmHg at four weeks after the start of VCO treatment. Lastly, the brain histopathology showed that the structurally damaged areas were smaller in group B than they were in group A. The VCO could have protective effects on the brain before and even after stroke incidence.

8.
PLoS One ; 16(5): e0251495, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34010316

RESUMEN

Baroreflex dysfunction is partly implicated in hypertension and one responsible region is the dorsal medulla oblongata including the nucleus tractus solitarius (NTS). NTS neurons receive and project glutamatergic inputs to subsequently regulate blood pressure, while G-protein-coupled metabotropic glutamate receptors (mGluRs) play a modulatory role for glutamatergic transmission in baroreflex pathways. Stimulating group II mGluR subtype 2 and 3 (mGluR2/3) in the brainstem can decrease blood pressure and sympathetic nervous activity. Here, we hypothesized that the chronic stimulation of mGluR2/3 in the dorsal medulla oblongata can alleviate hypertensive development via the modulation of autonomic nervous activity in young, spontaneously hypertensive rats (SHRs). Compared with that in the sham control group, chronic LY379268 application (mGluR2/3 agonist; 0.40 µg/day) to the dorsal medulla oblongata for 6 weeks reduced the progression of hypertension in 6-week-old SHRs as indicated by the 40 mmHg reduction in systolic blood pressure and promoted their parasympathetic nervous activity as evidenced by the heart rate variability. No differences in blood catecholamine levels or any echocardiographic indices were found between the two groups. The improvement of reflex bradycardia, a baroreflex function, appeared after chronic LY379268 application. The mRNA expression level of mGluR2, but not mGluR3, in the dorsal medulla oblongata was substantially reduced in SHRs compared to that of the control strain. In conclusion, mGluR2/3 signaling might be responsible for hypertension development in SHRs, and modulating mGluR2/3 expression/stimulation in the dorsal brainstem could be a novel therapeutic strategy for hypertension via increasing the parasympathetic activity.


Asunto(s)
Aminoácidos/uso terapéutico , Antihipertensivos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Hipertensión/tratamiento farmacológico , Bulbo Raquídeo/efectos de los fármacos , Receptores de Glutamato Metabotrópico/agonistas , Aminoácidos/farmacología , Animales , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Hipertensión/fisiopatología , Masculino , Bulbo Raquídeo/fisiopatología , Ratas Endogámicas SHR
9.
Exp Anim ; 69(2): 161-167, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31735765

RESUMEN

Environmental enrichment (EE) can reduce anxiety and stress in experimental animals, while little is known about the influence on autonomic nervous activity especially in disease animal models. Diabetes mellitus (DM) is associated with cardiovascular autonomic dysfunction, which can be characterized by a higher resting heart rate and a lower heart rate variability (HRV). We hypothesized that EE can enhance parasympathetic nervous activity while reducing disease progression in type 2 diabetic mice. A telemetry transmitter was implanted in NSY mice to continuously record electrocardiograms (ECG). Animals were kept in a cage with or without a nest box as EE. The autonomic nervous activity was evaluated using power spectral analysis of HRV. Four weeks of EE could increase high frequency (HF) power, but no change was observed in the absence of EE. Although animals showed impaired glucose tolerance at 48 weeks of age regardless of EE, a worsen case was observed in control. These results indicate that EE can be necessary for long-term housing of experimental animals and may reduce the risk of impaired glucose tolerance in NSY mice by enhancing parasympathetic nervous activity. In future, it is demanded whether increasing parasympathetic nervous activity, whatever the method is, can prevent diabetes from worsening.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Ambiente , Animales , Masculino , Ratones , Ratones Endogámicos
10.
Exp Anim ; 68(4): 511-517, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31168043

RESUMEN

The senescence-accelerated mouse (SAM) strain has been established as an inbred strain with an accelerated aging phenotype. SAM prone-8 (SAMP8), one of the SAM strain, exhibits learning disability, immune deficiency, and circadian rhythm loss at a relatively young age. However, it has not been clarified whether aging affects the autonomic nervous activity in SAMP8. The aim of this study was to clarify the utility of SAMP8 in age-related studies of autonomic nervous function. Electrocardiogram (ECG), body temperature, and locomotor activity were recorded to evaluate bio-behavioral activities. Autonomic nervous activity was evaluated via power spectral analysis of heart rate variability from ECG recordings. SAMP8 significantly decreased both biological and autonomic nervous functions, and the animals exhibited circadian rhythm loss of locomotive activity at as early as 40 weeks of age compared with a control strain at the same age. We concluded that the SAMP8 strain can be used as an animal model for age-related studies of autonomic nervous function.


Asunto(s)
Envejecimiento , Sistema Nervioso Autónomo/fisiología , Conducta Animal , Modelos Animales , Factores de Edad , Animales , Ciencias Bioconductuales , Masculino , Ratones , Ratones Endogámicos
11.
Am J Physiol Regul Integr Comp Physiol ; 305(10): R1153-62, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24068050

RESUMEN

We previously described synaptic currents between baroreceptor fibers and second-order neurons in the nucleus tractus solitarius (NTS) that were larger in Syrian hamsters than in rats. This suggested that although electrical activity throughout the hamster brain decreased as brain temperature declined, the greater synaptic input to its NTS would support continued operation of cardiorespiratory reflexes at low body temperatures. Here, we focused on properties that would protect these neurons against potential damage from the larger synaptic inputs, testing the hypotheses that hamster NTS neurons exhibit: 1) intrinsic N-methyl-D-aspartate receptor (NMDAR) properties that limit Ca(2+) influx to a greater degree than do rat NTS neurons and 2) properties that reduce gating signals to NMDARs to a greater degree than in rat NTS neurons. Whole cell patch-clamp recordings on anatomically identified second-order NTS baroreceptive neurons showed that NMDAR-mediated synaptic currents between sensory fibers and second-order NTS neurons were larger in hamsters than in rats at 33°C and 15°C, with no difference in their permeability to Ca(2+). However, at 15°C, but not at 33°C, non-NMDAR currents evoked by glutamate released from baroreceptor fibers had significantly shorter durations in hamsters than in rats. Thus, hamster NMDARs did not exhibit lower Ca(2+) influx than did rats (negating hypothesis 1), but they did exhibit significant differences in non-NMDAR neuronal properties at low temperature (consistent with hypothesis 2). The latter (shorter duration of non-NMDAR currents) would likely limit NMDAR coincidence gating and may help protect hamster NTS neurons, enabling them to contribute to signal processing at low body temperatures.


Asunto(s)
Frío , Hibernación/fisiología , Presorreceptores/fisiología , Transducción de Señal/fisiología , Núcleo Solitario/fisiología , Animales , Regulación de la Temperatura Corporal/fisiología , Cricetinae , Regulación de la Expresión Génica/fisiología , Masculino , Potenciales de la Membrana/fisiología , Neuronas/citología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Solitario/citología
12.
Artículo en Inglés | MEDLINE | ID: mdl-22262373

RESUMEN

Crucial for survival, the central nervous system must reliably process sensory information over all stages of a hibernation bout to ensure homeostatic regulation is maintained and well-matched to dramatically altered behavioral states. Comparing neural responses in the nucleus tractus solitarius of rats and euthermic Syrian hamsters, we tested the hypothesis that hamster neurons have adaptations sustaining signal processing while conserving energy. Using patch-clamp techniques, we classified second-order neurons in the nucleus as rapid-onset or delayed-onset spiking phenotypes based on their spiking onset to a depolarizing pulse (following a -80 mV prepulse). As temperature decreased from 33 to 15°C, the excitability of all neurons decreased. However, hamster rapid-onset spiking neurons had the highest spiking response and shortest action potential width at every temperature, while hamster delayed-onset spiking neurons had the most negative resting membrane potential. The frequency of spontaneous excitatory postsynaptic currents in both phenotypes decreased as temperature decreased, yet the amplitudes of tractus solitarius stimulation-evoked currents were greater in hamsters than in rats regardless of phenotype and temperature. Changes were significant (P < 0.05), supporting our hypothesis by showing that, as temperature falls, rapid-onset neurons contribute more to signal processing but less to energy conservation than do delayed-onset neurons.


Asunto(s)
Temperatura Corporal/fisiología , Tronco Encefálico/fisiología , Hibernación/fisiología , Detección de Señal Psicológica/fisiología , Potenciales de Acción/fisiología , Animales , Cricetinae , Interpretación Estadística de Datos , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/fisiología , Mesocricetus , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp , Presorreceptores/fisiología , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Sinapsis/fisiología , Temperatura
13.
Br J Pharmacol ; 163(4): 782-91, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21323902

RESUMEN

BACKGROUND AND PURPOSE: Second-hand tobacco smoke (SHS) exposure in children increases the risk of asthma and sudden infant death syndrome. Epidemiological and experimental data have suggested SHS can alter neuroplasticity in the CNS, associated with substance P. We hypothesized that exposure to SHS in young primates changed the effect of substance P on the plasticity of neurons in the nucleus tractus solitarius (NTS), where airway sensory information is first processed in the CNS. EXPERIMENTAL APPROACH: Thirteen-month-old rhesus monkeys were exposed to filtered air (FA, n= 5) or SHS (n= 5) for >6 months from 50 days of their fetal age. Whole-cell patch-clamp recordings were performed on NTS neurons in brainstem slices from these animals to record the intrinsic cell excitability in the absence or presence of the NK(1) receptor antagonist, SR140333 (3 µM). KEY RESULTS: Neurons were electrophysiologically classified based on their spiking onset from a hyperpolarized membrane potential into two phenotypes: rapid-onset spiking (RS) and delayed-onset spiking (DS) types. In RS neurons, SR140333 reduced the spiking response, similarly in both FA- and SHS-exposed animals. In DS neurons, SR140333 almost abolished the spiking response in FA-exposed animals, but had no effect in SHS-exposed animals. CONCLUSIONS AND IMPLICATIONS: The contribution of NK(1) receptors to cell excitability depended on firing phenotype of primate NTS neurons and was disrupted by SHS exposure, specifically in DS neurons. Our findings reveal a novel NK(1) receptor function in the primate brainstem and support the hypothesis that chronic exposure to SHS in children causes tachykinin-related neuroplastic changes in the CNS.


Asunto(s)
Antagonistas del Receptor de Neuroquinina-1 , Neuronas/metabolismo , Nicotiana/efectos adversos , Receptores de Neuroquinina-1/metabolismo , Núcleo Solitario/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Animales , Tronco Encefálico/efectos de los fármacos , Femenino , Macaca mulatta , Exposición Materna/efectos adversos , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Piperidinas/farmacología , Embarazo , Quinuclidinas/farmacología , Sustancia P/metabolismo
14.
Toxicol Appl Pharmacol ; 247(3): 204-10, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20600210

RESUMEN

Allergic airway diseases in children are a common and a growing health problem. Changes in the central nervous system (CNS) have been implicated in contributing to some of the symptoms. We hypothesized that airway allergic diseases are associated with altered histamine H3 receptor expression in the nucleus tractus solitarius (NTS) and caudal spinal trigeminal nucleus, where lung/airway and nasal sensory afferents terminate, respectively. Immunohistochemistry for histamine H3 receptors was performed on brainstem sections containing the NTS and the caudal spinal trigeminal nucleus from 6- and 12-month-old rhesus monkeys who had been exposed for 5 months to house dust mite allergen (HDMA)+O3 or to filtered air (FA). While histamine H3 receptors were found exclusively in astrocytes in the caudal spinal trigeminal nucleus, they were localized to both neuronal terminals and processes in the NTS. HDMA+O3 exposure significantly decreased histamine H3 receptor immunoreactivity in the NTS at 6 months and in the caudal spinal trigeminal nucleus at 12 months of age. In conclusion, exposing young primates to HDMA+O3 changed histamine H3 receptor expression in CNS pathways involving lung and nasal afferent nerves in an age-related manner. Histamine H3 receptors may be a therapeutic target for allergic asthma and rhinitis in children.


Asunto(s)
Exposición por Inhalación/efectos adversos , Ozono/toxicidad , Pyroglyphidae/inmunología , Receptores Histamínicos H3/biosíntesis , Hipersensibilidad Respiratoria/inmunología , Núcleo Solitario/efectos de los fármacos , Envejecimiento/inmunología , Envejecimiento/metabolismo , Animales , Modelos Animales de Enfermedad , Macaca mulatta , Receptores Histamínicos H3/análisis , Hipersensibilidad Respiratoria/metabolismo , Núcleo Solitario/crecimiento & desarrollo , Núcleo Solitario/inmunología , Núcleo Solitario/metabolismo , Núcleo Espinal del Trigémino/efectos de los fármacos , Núcleo Espinal del Trigémino/crecimiento & desarrollo , Núcleo Espinal del Trigémino/inmunología , Núcleo Espinal del Trigémino/metabolismo
15.
Eur J Neurosci ; 31(4): 673-84, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20384811

RESUMEN

Extended exposure to secondhand smoke (SHS) in infants and young children increases the incidence of cough, wheeze, airway hyper-reactivity and the prevalence and earlier onset of asthma. The adverse effects may result from environmentally-induced plasticity in the neural network regulating cough and airway function. Using whole-cell patch-clamp recordings in brainstem slices containing anatomically identified second-order lung afferent neurons in the nucleus tractus solitarius (NTS), we determined the effects of extended SHS exposure in young guinea pigs for a duration equivalent to human childhood on the intrinsic excitability of NTS neurons. SHS exposure resulted in marked decreases in the intrinsic excitability of a subset of lung afferent second-order NTS neurons. The neurons exhibited a decreased spiking capacity, prolonged action potential duration, reduced afterhyperpolarization, decrease in peak and steady-state outward currents, and membrane depolarization. SHS exposure effects were mimicked by low concentrations of the K+ channel blockers 4-aminopyridine and/or tetraethyl ammonium. The data suggest that SHS exposure downregulates K+ channel function in a subset of NTS neurons, resulting in reduced cell excitability. The changes may help to explain the exaggerated neural reflex responses in children exposed to SHS.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Pulmón/inervación , Neuronas Aferentes/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/fisiología , Contaminación por Humo de Tabaco/efectos adversos , 4-Aminopiridina/farmacología , Animales , Cobayas , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas Aferentes/metabolismo , Distribución Aleatoria , Núcleo Solitario/metabolismo , Tetraetilamonio/farmacología
16.
Toxicol Appl Pharmacol ; 242(2): 199-208, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19850058

RESUMEN

Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS and bronchiolitis in infants and asthma in older children.


Asunto(s)
Neuronas/citología , Núcleo Solitario/citología , Contaminación por Humo de Tabaco , Animales , Femenino , Macaca mulatta , Técnicas de Placa-Clamp , Embarazo
17.
J Neurosci ; 29(38): 11807-16, 2009 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-19776267

RESUMEN

The nucleus tractus solitarius (NTS) is essential for orchestrating baroreflex control of blood pressure. When a change in blood pressure occurs, the information is transmitted by baroreceptor afferent fibers to the central network by glutamate binding to ionotropic glutamate receptors on second-order baroreceptor neurons. Glutamate also activates presynaptic group II and III metabotropic glutamate receptors (mGluRs), depressing both glutamate and GABA release to modulate baroreceptor signal transmission. Here we present a novel role for postsynaptic group II mGluRs to further fine-tune baroreceptor signal transmission at the first central synapses. In a brainstem slice with ionotropic glutamate and GABA receptors blocked, whole-cell patch-clamp recordings of second-order baroreceptor neurons revealed that two group II mGluR agonists evoked concentration-dependent membrane hyperpolarizations. The hyperpolarization remained when a presynaptic contribution was prevented with Cd(2+), was blocked by a postsynaptic intervention of intracellular dialysis of the G-protein signaling inhibitor, was mimicked by endogenous release of glutamate by tractus solitarius stimulation, and was prevented by a group II mGluR antagonist. Postsynaptic localization of group II mGluRs was confirmed by fluorescent confocal immunohistochemistry and light microscopy. Group II mGluR induced-currents consisted of voltage-dependent outward and inward components, prevented by tetraethylammonium chloride and tetrodotoxin, respectively. In contrast to group II mGluR-induced hyperpolarization, there was no effect on intrinsic excitability as determined by action potential shape or firing in response to depolarizing current injections. The data suggest a novel mechanism for postsynaptic group II mGluRs to fine-tune baroreceptor signal transmission in the NTS.


Asunto(s)
Presorreceptores/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Núcleo Solitario/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Ácido Glutámico/metabolismo , Inmunohistoquímica , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Presorreceptores/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Transducción de Señal , Núcleo Solitario/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
18.
Eur J Neurosci ; 28(4): 771-81, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18657181

RESUMEN

Infants and young children experiencing extended exposure to secondhand smoke (SHS) have an increased occurrence of asthma, as well as increased cough, wheeze, mucus production and airway hyper-reactivity. Plasticity in lung reflex pathways has been implicated in causing these symptoms, as have changes in substance P-related mechanisms. Using whole-cell voltage-clamp recordings and immunohistochemistry in brainstem slices containing anatomically identified second-order lung afferent nucleus tractus solitarius (NTS) neurons, we determined whether extended SHS exposure during the equivalent period of human childhood modified evoked or spontaneous excitatory synaptic transmission, and whether those modifications were altered by endogenous substance P. SHS exposure enhanced evoked synaptic transmission between sensory afferents and the NTS second-order neurons by eliminating synaptic depression of evoked excitatory postsynaptic currents (eEPSCs), an effect reversed by the neurokinin-1-receptor antagonist (SR140333). The recruitment of substance P in enhancing evoked synaptic transmission was further supported by an increased number of substance P-expressing lung afferent central terminals synapsing onto the second-order lung afferent neurons. SHS exposure did not change background spontaneous EPSCs. The data suggest that substance P in the NTS augments evoked synaptic transmission of lung sensory input following extended exposure to a pollutant. The mechanism may help to explain some of the exaggerated respiratory responses of children exposed to SHS.


Asunto(s)
Pulmón/inervación , Plasticidad Neuronal/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Nicotina/farmacología , Núcleo Solitario/citología , Contaminación por Humo de Tabaco/efectos adversos , Animales , Niño , Potenciales Postsinápticos Excitadores/fisiología , Cobayas , Humanos , Lactante , Pulmón/efectos de los fármacos , Antagonistas del Receptor de Neuroquinina-1 , Neuronas Aferentes/citología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Distribución Aleatoria , Receptores de Neuroquinina-1/metabolismo , Núcleo Solitario/efectos de los fármacos , Sustancia P/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Nicotiana/química
19.
Pulm Pharmacol Ther ; 20(4): 347-54, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17174132

RESUMEN

Epidemiological studies have shown that exposure to air pollution is associated with respiratory symptoms and decreases in lung function. This paper reviews recent literature showing that exposure to particulate matter, irritant gases, environmental tobacco smoke (ETS), mixed pollutants, and molds is associated with an increase in cough and wheeze. Some pollutants, like particulate matter and mixed pollutants, appear to increase cough at least as much as wheeze. Others, like irritant gases, appear to increase wheeze more than cough. For ETS, exposure during childhood is associated with cough and wheeze in adulthood, suggesting that the pollutant permanently alters some important aspect of the lungs, immune system or nervous system. We have shown in animal studies that pollutants change the neural control of airways and cough. Second hand smoke (SHS) exposure lengthened stimulated apnoea, increased the number of stimulated coughs, and augmented the degree of stimulated bronchoconstriction. The mechanisms included enhanced reactivity of the peripheral sensory neurones and second-order neurones in the nucleus tractus solitarius (NTS). NTS effects were due to a substance P mechanism at least in part. Ozone and allergen increased the intrinsic excitability of second-order neurones in the NTS. The animal studies suggest that the cough and wheeze experienced by humans exposed to pollutants may involve plasticity in the nervous system.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Tos/inducido químicamente , Adulto , Animales , Niño , Tos/epidemiología , Modelos Animales de Enfermedad , Humanos , Exposición por Inhalación/efectos adversos , Vías Nerviosas/fisiopatología , Trastornos Respiratorios/etiología , Ruidos Respiratorios/efectos de los fármacos , Núcleo Solitario/fisiopatología , Contaminación por Humo de Tabaco/efectos adversos
20.
Respir Physiol Neurobiol ; 152(3): 312-9, 2006 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16554189

RESUMEN

The cough reflex is a brainstem reflex, consisting of specific sensory afferent nerves which trigger the reflex, by transmitting the sensory input over vagal or laryngeal nerves to a brainstem circuitry which processes and ultimately transforms the sensory input into a complex motor output to generate cough. The first synaptic target for the primary cough-related sensory input is the second-order neurons in the nucleus tractus solitarius (NTS). This position in the reflex pathway and intricate local circuits within the nucleus make it a strategic site where the sensory information can be modified. Plasticity at this synapse will change the nature of the output--exaggerating it, suppressing it or transforming it into some other complex pattern. This review integrates evidence implicating the NTS in exaggerated cough with proof of the concept that NTS neurons undergo plasticity to contribute to an exaggeration of cough.


Asunto(s)
Tronco Encefálico/fisiología , Tos , Plasticidad Neuronal/fisiología , Fenómenos Fisiológicos Respiratorios , Sistema Respiratorio/inervación , Vías Aferentes/fisiología , Animales , Humanos , Reflejo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...