Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 13(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34578827

RESUMEN

The human milk fat globule membrane (MFGM) contains important lipids for growing infants. Anthropometric measurements, milk samples, and infant milk intake were collected in a cohort of eleven healthy mother-infant dyads during exclusive breastfeeding from birth to six months. One hundred and sixty-six MFGM lipids were analysed using liquid chromatography-mass spectrometry, and the infant intake was calculated. The concentrations and intake were compared and associations between infant intake and growth characteristics explored. The lipid concentrations and infant intake varied widely between mother-infant dyads and between months one and three. The infant intake for many species displayed positive correlations with infant growth, particularly phospholipid species. The high variation in lipid intake is likely an important factor in infant growth, with strong correlations identified between the intake of many MFGM lipids and infant head circumference and weight. This study highlights the need for intake measurements and inclusion in cohort studies to elucidate the role of the human milk lipidome in infant growth and development.


Asunto(s)
Lactancia Materna/estadística & datos numéricos , Glucolípidos/administración & dosificación , Glucolípidos/análisis , Glicoproteínas/administración & dosificación , Glicoproteínas/análisis , Leche Humana/química , Adulto , Cromatografía Liquida , Femenino , Humanos , Lactante , Gotas Lipídicas , Estudios Longitudinales , Masculino , Espectrometría de Masas , Valores de Referencia , Australia Occidental
2.
Metabolites ; 11(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34436480

RESUMEN

Lipid mediators, small molecules involved in regulating inflammation and its resolution, are a class of lipids of wide interest as their levels in blood and tissues may be used to monitor health and disease states or the effect of new treatments. These molecules are present at low levels in biological samples, and an enrichment step is often needed for their detection. We describe a rapid and selective method that uses new low-cost molecularly imprinted (MIP) and non-imprinted (NIP) polymeric sorbents for the extraction of lipid mediators from plasma and tissue samples. The extraction process was carried out in solid-phase extraction (SPE) cartridges, manually packed with the sorbents. After extraction, lipid mediators were quantified by liquid chromatography-tandem mass spectrometry (LC-MSMS). Various parameters affecting the extraction efficiency were evaluated to achieve optimal recovery and to reduce non-specific interactions. Preliminary tests showed that MIPs, designed using the prostaglandin biosynthetic precursor arachidonic acid, could effectively enrich prostaglandins and structurally related molecules. However, for other lipid mediators, MIP and NIP displayed comparable recoveries. Under optimized conditions, the recoveries of synthetic standards ranged from 62% to 100%. This new extraction method was applied to the determination of the lipid mediators concentration in human plasma and mouse tissues and compared to other methods based on commercially available cartridges. In general, the methods showed comparable performances. In terms of structural specificity, our newly synthesized materials accomplished better retention of prostaglandins (PGs), hydroxydocosahexaenoic acid (HDoHE), HEPE, hydroxyeicosatetraenoic acids (HETE), hydroxyeicosatrienoic acid (HETrE), and polyunsaturated fatty acid (PUFA) compounds, while the commercially available Strata-X showed a higher recovery for dihydroxyeicosatetraenoic acid (diHETrEs). In summary, our results suggest that this new material can be successfully implemented for the extraction of lipid mediators from biological samples.

3.
Metabolites ; 11(2)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670205

RESUMEN

Lipids in breastmilk play a critical role in infant growth and development. However, few studies have investigated sources of variability of both high- and low-abundant milk lipids. The objective of our study was to investigate individual and morning-evening differences in the human milk lipidome. In this study, a modified two-phase method (MTBE: Methanol 7:2) was validated for the extraction of lipids from human breastmilk. This method was then applied to samples from a group of 20 healthy women to measure inter- and intra-individual (morning versus evening) variability of the breastmilk lipidome. We report here the levels of 237 lipid species from 13 sub-classes using reversed-phase liquid chromatography mass spectrometry (RP-LCMS) and direct-infusion mass spectrometry (DI-MS). About 85% of lipid species showed stable inter-individual differences across time points. Half of lipid species showed higher concentrations in the evening compared with the morning, with phosphatidylethanolamines (PEs) and triacylglycerols (TAGs) exhibiting the largest changes. In morning and evening samples, the biological variation was greater for diacylglycerols (DAGs) and TAGs compared with phospholipids and sphingolipids, and the variation in DAGs and TAGs was greater in evening samples compared with morning samples. These results demonstrate that variation in the milk lipidome is strongly influenced by individual differences and time of day.

4.
J Lipid Res ; 61(1): 105-115, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31732502

RESUMEN

Quantitative MS of human plasma lipids is a promising technology for translation into clinical applications. Current MS-based lipidomic methods rely on either direct infusion (DI) or chromatographic lipid separation methods (including reversed phase and hydrophilic interaction LC). However, the use of lipid markers in laboratory medicine is limited by the lack of reference values, largely because of considerable differences in the concentrations measured by different laboratories worldwide. These inconsistencies can be explained by the use of different sample preparation protocols, method-specific calibration procedures, and other experimental and data-reporting parameters, even when using identical starting materials. Here, we systematically investigated the roles of some of these variables in multiple approaches to lipid analysis of plasma samples from healthy adults by considering: 1) different sample introduction methods (separation vs. DI methods); 2) different MS instruments; and 3) between-laboratory differences in comparable analytical platforms. Each of these experimental variables resulted in different quantitative results, even with the inclusion of isotope-labeled internal standards for individual lipid classes. We demonstrated that appropriate normalization to commonly available reference samples (i.e., "shared references") can largely correct for these systematic method-specific quantitative biases. Thus, to harmonize data in the field of lipidomics, in-house long-term references should be complemented by a commonly available shared reference sample, such as NIST SRM 1950, in the case of human plasma.


Asunto(s)
Lipidómica/normas , Lípidos/sangre , Espectrometría de Masas , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Estándares de Referencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...