Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(16): 6411-6420, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37036319

RESUMEN

Developing cost-efficient and noble metal free electrocatalysts is vastly anticipated for the oxygen evolution reaction (OER). Therefore, in this study, to lift the thermodynamic and kinetic activity of the OER, we attempted to synthesize a bimetallic nickel and manganese-based zeolite imidazolate framework system in a fiber form. For this synthesis, a bottom-up approach has been followed through wet chemical analysis, and electrospinning was utilized for fiber formation. The resultant fiber has shown a lesser overpotential of 256 mV at a benchmarking current density of 10 mA cm-2 under 1 M KOH conditions. As expected, the attained Tafel slope and charge transfer resistance values are lesser. The observed results reveal that the synergism between the Ni and Mn nodes on the imidazolate framework successfully promotes the thermodynamic formation of *O and *OOH intermediates, which significantly helps to improve the faster OER kinetics at the electrode-electrolyte interface.

2.
Inorg Chem ; 61(51): 21055-21066, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36523209

RESUMEN

Water electrolysis encounters a challenging problem in designing a highly efficient, long durable, non-noble metal-free electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, in our work, a two-step hydrothermal reaction was performed to construct a hierarchal NiFe-layer double hydroxide (LDH)/CuS over copper foam for the overall water splitting reaction. While employed the same as an anode material, the designed heterostructure electrode NiFe-LDH/CuS/Cu exhibits excellent OER performance and it demands 249 mV overpotential to reach a current density of 50 mA cm-2 with a lower Tafel slope value of 81.84 mV dec-1. While as a cathode material, the NiFe-LDH/CuS/Cu shows superior HER performance and it demands just 28 mV of overpotential value to reach a current density of 10 mA cm-2 and a lower Tafel slope value of 95.98 mV dec-1. Hence, the NiFe-LDH/CuS/Cu outperforms the commercial Pt/C and RuO2 in terms of activity in HER and OER, respectively. Moreover, when serving as both the cathode and anode catalysts in an electrolyzer for total water splitting, the synthesized electrode only needs a cell potential of 1.55 V versus RHE to reach a current density of 20 mA cm-2 and long-term durability for 25 h in alkaline media. To study the interfacial electron transfer, Mott-Schottky experiments were performed, representing that the electron is transferred from n-type NiFe-LDH to p-type CuS as a result of creating the p-n junction in NiFe-LDH/CuS/Cu. The formation of this p-n junction allows the LDH layer to be more active toward the OH- adsorption and thereby could allow the OER or HER with a less energy input. This work affords another route to a cost effective, highly efficient catalyst toward producing clean energy across the globe.

3.
ACS Appl Mater Interfaces ; 14(41): 46581-46594, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36194123

RESUMEN

Finding the active center in a bimetallic zeolite imidazolate framework (ZIF) is highly crucial for the electrocatalytic oxygen evolution reaction (OER). In the present study, we constructed a bimetallic ZIF system with cobalt and manganese metal ions and subjected it to an electrospinning technique for feasible fiber formation. The obtained nanofibers delivered a lower overpotential value of 302 mV at a benchmarking current density of 10 mA cm-2 in an electrocatalytic OER study under alkaline conditions. The obtained Tafel slope and charge-transfer resistance values were 125 mV dec-1 and 4 Ω, respectively. The kinetics of the reaction is mainly attributed from the ratio of metals (Co and Mn) present in the catalyst. Jahn-Teller distortion reveals that the electrocatalytic active center on the Mn-incorporated ZIF-67 nanofibers (Mn-ZIF-67-NFs) was found to be Mn3+ along with the Mn2+ and Co2+ ions on the octahedral and tetrahedral sites, respectively, where Co2+ ions tend to suppress the distortion, which is well supported by density functional theory analysis, molecular orbital study, and magnetic studies.

4.
Nanoscale ; 14(29): 10360-10374, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35708550

RESUMEN

The development of efficient electrocatalysts for the water splitting process and understanding their fundamental catalytic mechanisms are highly essential to achieving high performance in energy conversion technologies. Herein, we have synthesised spinel nickel ferrite nanofibers (NiFe2O4-NFs) via an electrospinning (ES) method followed by a carbonization process. The resultant fiber was subjected to electrocatalytic water splitting reactions in alkaline medium. The catalytic efficiency of the NiFe2O4-NFs in OER was highly satisfactory. But it is not high enough to catalyse the HER process. Hence, palladium ions were decorated as nanosheets on NiFe2O4-NFs as a heterostructure to improve the catalytic efficiency for HER. Density functional theory (DFT) confirms that the addition of palladium to NiFe2O4-NFs helps to reduce the effect of catalyst poisoning and improve the efficiency of the catalyst. In an alkaline hybrid electrolyser, the required cell voltage was observed as 1.51 V at a fixed current density of 10 mA cm-2.

5.
ACS Omega ; 7(23): 19754-19763, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35721992

RESUMEN

Human health-related issues are increasing in day to day life because of the modern and unhygienic food lifestyles. In recent times, green tea (GT) gains more attention due to its numerous health benefits. It contains more biologically active compounds that improve mental health, increase metabolism, reduce cancer risks, and serve as an anti-aging agent for the brain. As it is globally consumed, the evaluation of the compounds present in it is very important. Hence, an attempt has been performed to evaluate these components in GT by using a cobalt nickel iron-based trimetallic zeolitic imidazolate framework as microfibers (CoNiFe-ZIF-MFs) synthesized via an electrospinning technique. Interestingly, the synthesized CoNiFe-ZIF-MFs catalyst simultaneously detects three major catechin (CT) groups, namely, epigallocatechin-3-gallate (EGCG), epicatechin (EC), and epicatechingallate (ECG). Further, the square wave voltammetry findings showed that there is a wide linear range of 50 ng to 1 mg for all the three CTs with LODs 45, 8, and 4 ng for EGCG, EC, and ECG, respectively. These results confirm the excellent sensing behavior of the composite toward GT extracts, proposing its practical utility in real-time compound analysis in food sectors. Other results like stability and reproducibility also promote its usage in the biomedical field. This study mainly focuses on the direct sensing of CTs present in GT without spiking any commercially purchased sample, and the sensing was performed simultaneously for all the three analytes; thus, this work gains novelty from the existing ones.

6.
Inorg Chem ; 61(22): 8570-8584, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35613470

RESUMEN

Internal Ni-vacancy-enriched spherical AuNi nanoalloys (AuNi1-2-T) have been prepared via a noble electrochemical etching method. AuNi1.5-T showed the highest oxygen evolution reaction (OER) activity compared to bare AuNi1.5, and it demands only 239 mV overpotential, which was 134 mV lesser than the overpotential required by commercial RuO2 at 10 mA cm-2 current density in a 1 M KOH solution (pH = 14). The calculated turnover frequency (TOF) value for AuNi1.5-T (0.0229 s-1) was 11.74 times higher than that of AuNi1.5 (0.00195 s-1). Also, the electrochemically activated AuNi1.5-T showed superior neutral water oxidation activity by demanding only 335 mV overpotential with a TOF value of 0.000135 s-1 in a 1 M Na2SO4 solution (pH = 7) at 10 mA cm-2. The long-term stability studies (over 60 h) reveal the excellent robustness of an electrochemically treated alloy system. Density functional theory based electronic structure calculations showed that in the case of AuNi and AuNi1.5, Au d, Au s, and Ni d orbitals have significant contributions, whereas in the Ni-vacant systems, the density of states is mainly governed by d orbitals of Au and Ni. Also, the Ni-vacant system possesses a work function value of 4.96 eV, which is lower than that of the pristine system (5.27 eV) and thereby favored OH- binding with an optimum adsorption energy. This result is in reasonable agreement with the experimental outcome of an accelerated OER in a vacancy-enriched Ni-rich AuNi alloy system. Also, mechanistic analysis reveals that the creation of a Ni vacancy can effectively alter the overall mechanism of the OER and thereby facilitate the same with a lower applied energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...