Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916914

RESUMEN

Inertial confinement fusion and inertial fusion energy experiments diagnose the geometry of the fusion region through imaging of the neutrons released through fusion reactions. Pinhole arrays typically used for such imaging require thick substrates to obtain high contrast along with a small pinhole diameter to obtain high resolution capability, resulting in pinholes that have large aspect ratios. This leads to expensive pinhole arrays that have small solid angles and are difficult to align. Here, we propose a coded aperture with scatter and partial attenuation (CASPA) for fusion neutron imaging that relaxes the thick substrate requirement for good image contrast. These coded apertures are expected to scale to larger solid angles and are easier to align without sacrificing imaging resolution or throughput. We use Monte Carlo simulations (Geant4) to explore a coded aperture design to measure neutron implosion asymmetries on fusion experiments at the National Ignition Facility (NIF) and discuss the viability of this technique, matching the current nominal resolution of 10 µm. The results show that a 10 mm thick tungsten CASPA can image NIF implosions with neutron yields above 1014 with quality comparable to unprocessed data from a current NIF neutron imaging aperture. This CASPA substrate is 20 times thinner than the current aperture arrays for fusion neutron imaging and less than one mean free-path of 14.1 MeV neutrons through the substrate. Since the resolution, solid angle, and throughput are decoupled in coded aperture imaging, the resolution and solid angle achievable with future designs will be limited primarily by manufacturing capability.

2.
Nat Commun ; 11(1): 6355, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311487

RESUMEN

Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.

3.
Nat Commun ; 10(1): 1758, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988285

RESUMEN

The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.

4.
Phys Rev Lett ; 120(20): 204801, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29864368

RESUMEN

A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer-thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modeling shows that by controlling the deuterium layer thickness, a composite H^{+}/D^{+} ion beam can be produced by target normal sheath acceleration (TNSA), with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modeling shows that a (4.3±0.7) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9°. Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4±0.7) MeV per nucleon was measured in a cone of half angle 7°-9°, while maintaining a significant TNSA proton component.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...