Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chempluschem ; 89(4): e202300508, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37847591

RESUMEN

Aqueous chemistry within carbonaceous planetesimals is promising for synthesizing prebiotic organic matter essential to all life. Meteorites derived from these planetesimals delivered these life building blocks to the early Earth, potentially facilitating the origins of life. Here, we studied the formation of vitamin B3 as it is an important precursor of the coenzyme NAD(P)(H), which is essential for the metabolism of all life as we know it. We propose a new reaction mechanism based on known experiments in the literature that explains the synthesis of vitamin B3. It combines the sugar precursors glyceraldehyde or dihydroxyacetone with the amino acids aspartic acid or asparagine in aqueous solution without oxygen or other oxidizing agents. We performed thermochemical equilibrium calculations to test the thermodynamic favorability. The predicted vitamin B3 abundances resulting from this new pathway were compared with measured values in asteroids and meteorites. We conclude that competition for reactants and decomposition by hydrolysis are necessary to explain the prebiotic content of meteorites. In sum, our model fits well into the complex network of chemical pathways active in this environment.

2.
Sci Rep ; 13(1): 6843, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231067

RESUMEN

The emergence of prebiotic organics was a mandatory step toward the origin of life. The significance of the exogenous delivery versus the in-situ synthesis from atmospheric gases is still under debate. We experimentally demonstrate that iron-rich meteoritic and volcanic particles activate and catalyse the fixation of CO2, yielding the key precursors of life-building blocks. This catalysis is robust and produces selectively aldehydes, alcohols, and hydrocarbons, independent of the redox state of the environment. It is facilitated by common minerals and tolerates a broad range of the early planetary conditions (150-300 °C, ≲ 10-50 bar, wet or dry climate). We find that up to 6 × 108 kg/year of prebiotic organics could have been synthesized by this planetary-scale process from the atmospheric CO2 on Hadean Earth.

3.
Nanotechnology ; 34(19)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36745919

RESUMEN

A systematic spectroscopic characterization of highly homogeneous water suspensions of 'buckydiamonds' comprising sp3cubic nanodiamond (ND) core covered with disordered sp2shell densely decorated with oxygen-containing groups demonstrates the excitation-wavelength-dependent photoluminescence (PL) given by at least four types of specific structures on the ND surface (hydroxyl, C=O containing ketones, carboxylic anhydrides, and carboxyl groups). PL properties of NDs suspensions possess concentration-dependent behavior revealing tendency of NDs to agglomerate. PL of NDs has been found to be strongly sensitive to pH of the environment in wide range of pH values, i.e. 2-11. We disclosed the mechanisms of pH sensitivity of the 'buckydiamond' and proved that it can serve as all-optical sensor of tiny pH variations suitable for further exploitation for pH sensing locally in the area where NDs have been delivered for any purpose, e.g. bioimaging or therapeutic needs.

4.
Curr Issues Mol Biol ; 44(11): 5294-5311, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36354672

RESUMEN

Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. The study of the pathogenesis of GBM, as well as the development of targeted oncolytic drugs, require the use of actual cell models, in particular, the use of 3D cultures or neurospheres (NS). During the formation of NS, the adaptive molecular landscape of the transcriptome, which includes various regulatory RNAs, changes. The aim of this study was to reveal changes in the expression of microRNAs (miRNAs) and their target mRNAs in GBM cells under conditions of NS formation. Neurospheres were obtained from both immortalized U87 MG and patient-derived BR3 GBM cell cultures. Next generation sequencing analysis of small and long RNAs of adherent and NS cultures of GBM cells was carried out. It was found that the formation of NS proceeds with an increase in the level of seven and a decrease in the level of 11 miRNAs common to U87 MG and BR3, as well as an increase in the level of 38 and a decrease in the level of 12 mRNA/lncRNA. Upregulation of miRNAs hsa-miR: -139-5p; -148a-3p; -192-5p; -218-5p; -34a-5p; and -381-3p are accompanied by decreased levels of their target mRNAs: RTN4, FLNA, SH3BP4, DNPEP, ETS2, MICALL1, and GREM1. Downregulation of hsa-miR: -130b-5p, -25-5p, -335-3p and -339-5p occurs with increased levels of mRNA-targets BDKRB2, SPRY4, ERRFI1 and TGM2. The involvement of SPRY4, ERRFI1, and MICALL1 mRNAs in the regulation of EGFR/FGFR signaling highlights the role of hsa-miR: -130b-5p, -25-5p, -335-3p, and -34a-5p not only in the formation of NS, but also in the regulation of malignant growth and invasion of GBM. Our data provide the basis for the development of new approaches to the diagnosis and treatment of GBM.

5.
Cells ; 11(19)2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-36231068

RESUMEN

Glioma is the most common and heterogeneous primary brain tumor. The development of a new relevant preclinical models is necessary. As research moves from cultures of adherent gliomas to a more relevant model, neurospheres, it is necessary to understand the changes that cells undergo at the transcriptome level. In the present work, we used three patient-derived gliomas and two immortalized glioblastomas, while their cultivation was carried out under adherent culture and neurosphere (NS) conditions. When comparing the transcriptomes of monolayer (ML) and NS cell cultures, we used Enrichr genes sets enrichment analysis to describe transcription factors (TFs) and the pathways involved in the formation of glioma NS. It was observed that NS formation is accompanied by the activation of five common gliomas of TFs, SOX2, UBTF, NFE2L2, TCF3 and STAT3. The sets of transcripts controlled by TFs MYC and MAX were suppressed in NS. Upregulated genes are involved in the processes of the epithelial-mesenchymal transition, cancer stemness, invasion and migration of glioma cells. However, MYC/MAX-dependent downregulated genes are involved in translation, focal adhesion and apical junction. Furthermore, we found three EGFR and FGFR signaling feedback regulators common to all analyzed gliomas-SPRY4, ERRFI1, and RAB31-which can be used for creating new therapeutic strategies of suppressing the invasion and progression of gliomas.


Asunto(s)
Glioma , Transcriptoma , Línea Celular Tumoral , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Humanos , Transcriptoma/genética
6.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805985

RESUMEN

Cat allergy is a major trigger factor for respiratory reactions (asthma and rhinitis) in patients with immunoglobulin E (IgE) sensitization. In this study, we used a comprehensive panel of purified cat allergen molecules (rFel d 1, nFel d 2, rFel d 3, rFel d 4, rFel d 7, and rFel d 8) that were obtained by recombinant expression in Escherichia coli or by purification as natural proteins to study possible associations with different phenotypes of cat allergy (i.e., rhinitis, conjunctivitis, asthma, and dermatitis) by analyzing molecular IgE recognition profiles in a representative cohort of clinically well-characterized adult cat allergic subjects (n = 84). IgE levels specific to each of the allergen molecules and to natural cat allergen extract were quantified by ImmunoCAP measurements. Cumulative IgE levels specific to the cat allergen molecules correlated significantly with IgE levels specific to the cat allergen extract, indicating that the panel of allergen molecules resembled IgE epitopes of the natural allergen source. rFel d 1 represented the major cat allergen, which was recognized by 97.2% of cat allergic patients; however, rFel d 3, rFel d 4, and rFel d 7 each showed IgE reactivity in more than 50% of cat allergic patients, indicating the importance of additional allergens in cat allergy. Patients with cat-related skin symptoms showed a trend toward higher IgE levels and/or frequencies of sensitization to each of the tested allergen molecules compared with patients suffering only from rhinitis or asthma, while there were no such differences between patients with rhinitis and asthma. The IgE levels specific to allergen molecules, the IgE levels specific to cat allergen extract, and the IgE levels specific to rFel d 1 were significantly higher in patients with four different symptoms compared with patients with 1-2 symptoms. This difference was more pronounced for the sum of IgE levels specific to the allergen molecules and to cat extract than for IgE levels specific for rFel d 1 alone. Our study indicates that, in addition to rFel d 1, rFel d 3, rFel d 4, and rFel d 7 must be considered as important cat allergens. Furthermore, the cumulative sum of IgE levels specific to cat allergen molecules seems to be a biomarker for identifying patients with complex phenotypes of cat allergy. These findings are important for the diagnosis of IgE sensitization to cats and for the design of allergen-specific immunotherapies for the treatment and prevention of cat allergy.


Asunto(s)
Alveolitis Alérgica Extrínseca , Asma , Hipersensibilidad , Rinitis , Alérgenos , Glicoproteínas/genética , Humanos , Hipersensibilidad/diagnóstico , Inmunoglobulina E/genética , Fenotipo
7.
Life (Basel) ; 12(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35330155

RESUMEN

The origin of life might be sparked by the polymerization of the first RNA molecules in Darwinian ponds during wet-dry cycles. The key life-building block ribose was found in carbonaceous chondrites. Its exogenous delivery onto the Hadean Earth could be a crucial step toward the emergence of the RNA world. Here, we investigate the formation of ribose through a simplified version of the formose reaction inside carbonaceous chondrite parent bodies. Following up on our previous studies regarding nucleobases with the same coupled physico-chemical model, we calculate the abundance of ribose within planetesimals of different sizes and heating histories. We perform laboratory experiments using catalysts present in carbonaceous chondrites to infer the yield of ribose among all pentoses (5Cs) forming during the formose reaction. These laboratory yields are used to tune our theoretical model that can only predict the total abundance of 5Cs. We found that the calculated abundances of ribose were similar to the ones measured in carbonaceous chondrites. We discuss the possibilities of chemical decomposition and preservation of ribose and derived constraints on time and location in planetesimals. In conclusion, the aqueous formose reaction might produce most of the ribose in carbonaceous chondrites. Together with our previous studies on nucleobases, we found that life-building blocks of the RNA world could be synthesized inside parent bodies and later delivered onto the early Earth.

8.
Nano Lett ; 22(4): 1680-1687, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35129357

RESUMEN

Magnetic field- and polarization-dependent measurements on bright and dark excitons in monolayer WSe2 combined with time-dependent density functional theory calculations reveal intriguing phenomena. Magnetic fields up to 25 T parallel to the WSe2 plane lead to a partial brightening of the energetically lower lying exciton, leading to an increase of the dephasing time. Using a broadband femtosecond pulse excitation, the bright and partially allowed excitonic state can be excited simultaneously, resulting in coherent quantum beating between these states. The magnetic fields perpendicular to the WSe2 plane energetically shift the bright and dark excitons relative to each other, resulting in the hybridization of the states at the K and K' valleys. Our experimental results are well captured by time-dependent density functional theory calculations. These observations show that magnetic fields can be used to control the coherent dephasing and coupling of the optical excitations in atomically thin semiconductors.

9.
Biomed Opt Express ; 12(10): 6066-6080, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34745722

RESUMEN

Optical properties of biological tissues in the NIR spectral range have demonstrated significant potential for in vivo diagnostic applications and are critical parameters for modelling light interaction in biological tissues. This study aims to investigate the optical properties of articular cartilage as a function of tissue depth and integrity. The results suggest consistent wavelength-dependent variation in optical properties between cartilage depth-wise zones, as well as between healthy and degenerated tissue. Also, statistically significant differences (p<0.05) in both optical properties were observed between the different cartilage depth-wise zones and as a result of tissue degeneration. When taken into account, the outcome of this study could enable accurate modelling of light interaction in cartilage matrix and could provide useful diagnostic information on cartilage integrity.

11.
Biomed Opt Express ; 11(11): 6480-6494, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33282503

RESUMEN

Absorption and reduced scattering coefficients ( µ a , µ s ' ) of biological tissues have shown significant potential in biomedical applications. Thus, they are effective parameters for the characterization of tissue integrity and provide vital information on the health of biological tissues. This study investigates the potential of optical properties ( µ a , µ s ' ) for estimating articular cartilage composition and biomechanical properties using multivariate and machine learning techniques. The results suggest that µa could optimally estimate cartilage proteoglycan content in the superficial zone, in addition to its equilibrium modulus. While µ s ' could effectively estimate the proteoglycan content of the middle and deep zones in addition to the instantaneous and dynamic moduli of articular cartilage.

12.
Insights Imaging ; 11(1): 60, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32346809

RESUMEN

BACKGROUND: The paper covers modern approaches to the evaluation of neoplastic processes with diffusion-weighted imaging (DWI) and proposes a physical model for monitoring the primary quantitative parameters of DWI and quality assurance. Models of hindered and restricted diffusion are studied. MATERIAL AND METHOD: To simulate hindered diffusion, we used aqueous solutions of polyvinylpyrrolidone with concentrations of 0 to 70%. We created siloxane-based water-in-oil emulsions that simulate restricted diffusion in the intracellular space. To obtain a high signal on DWI in the broadest range of b values, we used silicon oil with high T2: cyclomethicone and caprylyl methicone. For quantitative assessment of our phantom, we performed DWI on 1.5T magnetic resonance scanner with various fat suppression techniques. We assessed water-in-oil emulsion as an extracorporeal source signal by simultaneously scanning a patient in whole-body DWI sequence. RESULTS: We developed phantom with control substances for apparent diffusion coefficient (ADC) measurements ranging from normal tissue to benign and malignant lesions: from 2.29 to 0.28 mm2/s. The ADC values of polymer solutions are well relevant to the mono-exponential equation with the mean relative difference of 0.91%. CONCLUSION: The phantom can be used to assess the accuracy of the ADC measurements, as well as the effectiveness of fat suppression. The control substances (emulsions) can be used as a body marker for quality assurance in whole-body DWI with a wide range of b values.

13.
Front Pharmacol ; 10: 1246, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31780925

RESUMEN

CRISPR technologies are nowadays widely used for targeted knockout of numerous protein-coding genes and for the study of various processes and metabolic pathways in human cells. Most attention in the genome editing field is now focused on the cleavage of protein-coding genes or genes encoding long non-coding RNAs (lncRNAs), while the studies on targeted knockout of intron-encoded regulatory RNAs are sparse. Small nucleolar RNAs (snoRNAs) present a class of non-coding RNAs encoded within the introns of various host genes and involved in post-transcriptional maturation of ribosomal RNAs (rRNAs) in eukaryotic cells. Box C/D snoRNAs direct 2'-O-methylation of rRNA nucleotides. These short RNAs have specific elements in their structure, namely, boxes C and D, and a target-recognizing region. Here, we present the study devoted to CRISPR/Cas9-mediated editing of box C/D snoRNA genes in Gas5. We obtained monoclonal cell lines carrying mutations in snoRNA genes and analyzed the levels of the mutant box C/D snoRNA as well as the 2'-O-methylation status of the target rRNA nucleotide in the obtained cells. Mutations in SNORD75 in the obtained monoclonal cell line were shown to result in aberrant splicing of Gas5 with exclusion of exons 3 to 5, which was confirmed by RT-PCR and RNA-Seq. The obtained results suggest that SNORD75 contains an element for binding of some factors regulating maturation of Gas5 pre-lncRNA. We suggest that METTL3/METTL14 is among such factors, and m6A-methylation pathways are involved in regulation of Gas5 splicing. Our results shell light on the role of SNORDs in regulating splicing of the host gene.

14.
Nat Commun ; 10(1): 129, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631053

RESUMEN

Recently the hybrid organic-inorganic trihalide perovskites have shown remarkable performance as active layers in photovoltaic and other optoelectronic devices. However, their spin characteristic properties have not been fully studied, although due to the relatively large spin-orbit coupling these materials may show great promise for spintronic applications. Here we demonstrate spin-polarized carrier injection into methylammonium lead bromide films from metallic ferromagnetic electrodes in two spintronic-based devices: a 'spin light emitting diode' that results in circularly polarized electroluminescence emission; and a 'vertical spin valve' that shows giant magnetoresistance. In addition, we also apply a magnetic field perpendicular to the injected spins orientation for measuring the 'Hanle effect', from which we obtain a relatively long spin lifetime for the electrically injected carriers. Our measurements initiate the field of hybrid perovskites spin-related optoelectronic applications.

15.
Genes (Basel) ; 9(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400232

RESUMEN

Short nuclear regulatory RNAs play a key role in the main stages of maturation of the precursors of the major RNA species. Small nuclear RNAs (snRNAs) form the core of the spliceosome and are responsible for the splicing of pre-mRNA molecules. Small nucleolar RNAs (snoRNAs) direct post-transcriptional modification of pre-rRNAs. A promising strategy for the development of non-coding RNA (ncRNAs) mimicking molecules is the introduction of modified nucleotides, which are normally present in natural ncRNAs, into the structure of synthetic RNAs. We have created a set of snoRNAs and snRNA analogs and studied the effect of base modifications, specifically, pseudouridine (Ψ) and 5-methylcytidine (m5C), on the immune-stimulating and cytotoxic properties of these RNAs. Here, we performed a whole-transcriptome study of the influence of synthetic snoRNA analogs with various modifications on gene expression in human cells. Moreover, we confirmed the role of PKR in the recognition of snoRNA and snRNA analogs using the short hairpin RNA (shRNA) technique. We believe that the data obtained will contribute to the understanding of the role of nucleotide modification in ncRNA functions, and can be useful for creating the agents for gene regulation based on the structure of natural snoRNAs and snRNAs.

16.
BMC Cancer ; 18(1): 728, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986702

RESUMEN

BACKGROUND: The phenomenon of chemotherapy-resistant cancers has necessitated the development of new therapeutics as well as the identification of specific prognostic markers to predict the response to novel drugs. Primary cancer cells provide a model to study the multiplicity of tumourigenic transformation, to investigate alterations of the cellular response to various molecular stimuli, and to test therapeutics for cancer treatment. METHODS: Here, we developed primary cultures of human breast tissue - normal cells (BN1), cancer cells (BC5), and cells from a chemotherapy-treated tumour (BrCCh1) to compare their response to conventional chemotherapeutics and to innate immunity stimulators with that of the immortalized breast cells MCF7, MDA-MB-231, and MCF10A. Expression of the progesterone receptor (PGR), oestrogen receptor (ER) α and ß, human epidermal growth factor receptor (HER) 2 and 3 and aromatase CYP19, as well as expression of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) mRNA in human breast cells were characterized. RESULTS: We revealed that BC5 carcinoma cells were PGRlow/ERbhigh/ERa-/Cyp19+, the BrCCh1 cells that originated from the recurrent tumour were PGR-/ERb+/ERa-/Cyp19+, and normal BN cells were PGR-/ERb+/ERa-/Cyp19high. The treatment of primary culture cells with antitumour therapeutics revealed that BrCCh1 cells were doxorubicine-resistant and sensitive to cisplatin. BC5 cells exhibited low sensitivity to tamoxifen and cisplatin. The innate immunity activators interferon-α and an artificial small nucleolar RNA analogue increased expression of IFIT3 at different levels in primary cells and in the immortalized breast cells MCF7, MDA-MB-231, and MCF10A. The relative level of activation of IFIT3 expression was inversely correlated with the baseline level of IFIT3 mRNA expression in breast cell lines. CONCLUSION: Our data demonstrated that primary cancer cells are a useful model for the development of novel cancer treatments. Our findings suggest that expression of IFIT3 mRNA can be used as a prognostic marker of breast cancer cell sensitivity to immunostimulating therapeutics.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Antígeno CD24/análisis , Línea Celular Tumoral , Femenino , Humanos , Receptores de Hialuranos/análisis , Péptidos y Proteínas de Señalización Intracelular/genética , ARN Mensajero/análisis , Receptores de Estrógenos/análisis
17.
Proc Natl Acad Sci U S A ; 114(43): 11327-11332, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28973920

RESUMEN

Before the origin of simple cellular life, the building blocks of RNA (nucleotides) had to form and polymerize in favorable environments on early Earth. At this time, meteorites and interplanetary dust particles delivered organics such as nucleobases (the characteristic molecules of nucleotides) to warm little ponds whose wet-dry cycles promoted rapid polymerization. We build a comprehensive numerical model for the evolution of nucleobases in warm little ponds leading to the emergence of the first nucleotides and RNA. We couple Earth's early evolution with complex prebiotic chemistry in these environments. We find that RNA polymers must have emerged very quickly after the deposition of meteorites (less than a few years). Their constituent nucleobases were primarily meteoritic in origin and not from interplanetary dust particles. Ponds appeared as continents rose out of the early global ocean, but this increasing availability of "targets" for meteorites was offset by declining meteorite bombardment rates. Moreover, the rapid losses of nucleobases to pond seepage during wet periods, and to UV photodissociation during dry periods, mean that the synthesis of nucleotides and their polymerization into RNA occurred in just one to a few wet-dry cycles. Under these conditions, RNA polymers likely appeared before 4.17 billion years ago.


Asunto(s)
Respiraderos Hidrotermales , Modelos Teóricos , Nucleótidos/química , ARN/química , Adenina/química , Polvo Cósmico , Planeta Tierra , Evolución Molecular , Meteoroides , Origen de la Vida , Polimerizacion , Uracilo/química
18.
Biomed Res Int ; 2017: 7404912, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28127559

RESUMEN

Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches.


Asunto(s)
ARN/sangre , Adenocarcinoma/sangre , Adenocarcinoma/genética , Adenocarcinoma del Pulmón , Células Sanguíneas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/sangre , Carcinoma de Células Escamosas/genética , Estudios de Casos y Controles , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Masculino , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Plasma/metabolismo , ARN/clasificación , ARN/genética , ARN Mensajero/sangre , ARN Mensajero/genética , ARN Mitocondrial , ARN Nuclear/sangre , ARN Nuclear/genética
19.
Nanomedicine (Lond) ; 11(16): 2073-82, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27463222

RESUMEN

AIM: A new type of surface modification of SOI-FET sensors with ultrathin sensor-probe transition layer and uncharged probes for highly specific detection of short RNA (saRNA) was suggested. MATERIALS & METHODS: Carbonyldiimidazole (CDI) or glycidoxypropyltrimethoxysilane were used as precursors of sensor-probe interface layers, together with peptide nucleic acids and new NA analogues - phosphoryl guanidine oligo(2'-OMe)ribonucleotides (PGO) as probes for RNA hybridization. RNA sequences corresponding to mRNA NELFA (NM_005663) and microRNA-29a (cancer markers) were used as saRNA targets. Real-time saRNA detection by SOI-FET sensors and fluorescence analysis were applied. RESULTS: Highly specific response with femtomolar sensitivity to saRNA was demonstrated for CDI-PGO-modified sensors fabricated by optical lithography. CONCLUSION: The proposed CDI-PGO protocol of modification of Si sensor surface is a promising procedure for biomedical applications.


Asunto(s)
Técnicas Biosensibles/métodos , Hibridación de Ácido Nucleico/métodos , ARN Interferente Pequeño/análisis , Secuencia de Bases , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Humanos , Imidazoles/química , MicroARNs/genética , Sondas de Oligonucleótidos/química , Ácidos Nucleicos de Péptidos/química , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Silanos/química , Propiedades de Superficie , Factores de Elongación Transcripcional/genética
20.
Appl Opt ; 54(25): 7514-9, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26368871

RESUMEN

We present a novel method for optical identification, i.e., authenticating valuable documents such as a passport, credit cards, and bank notes, using optical coherence tomography (OCT). An OCT system can capture three-dimensional (3D) images and visualize the internal structure of an object. In our work, as an object, we consider a multilayered optical identification tag composed of a limited number of thin layers (10-100 µm thick). The thickness, width, and location of the layers in the tag encode a unique identification information. Reading of the tag is done using a time domain OCT (TD-OCT) system. Typically, a TD-OCT system requires continuous mechanical scanning in one or more directions to get a 3D volume image of an object. The continuous scanning implies a complicated optical setup, which makes an OCT system fragile and expensive. We propose to avoid the conventional scanning by (1) not requiring 3D imaging, and (2) utilizing the motion of the optical tag itself. The motion is introduced to the tag reader, for example, by a user, which replaces the need for conventional scanning. The absence of a conventional scanning mechanism makes the proposed OCT method very simple and suited for identification purposes; however, it also puts some constraints to the construction of the optical tag, which we discuss in this paper in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...