Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(45): 10166-10172, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37925663

RESUMEN

Single-molecule spectroscopy (SMS) is a unique and competent technique to study molecule dynamics and sense biomolecules precisely. The design of an ultrahigh-stability single fluorophore probe with excellent photostability and long-lived dark transient states for single-molecule fluorescence microscopy is challenging. Here, we found that the photostability of bimetallic AuAg28 nanoclusters is better than monometallic Ag29 nanoclusters. The photon antibunching experiments unveiled exceptional brightness and remarkable photostability with high survival times of up to 218 s with minimal blinking. AuAg28 NCs exhibited longer "on" times and shorter "off" times as compared to Ag29 NCs. The statistical analysis was performed on at least 100 molecules that showed single-step photobleaching and almost a 5-fold enhancement in intensity on Au doping in Ag29 NCs. The distinctive and tunable photophysics of metal NCs can offer huge potential in pushing single-molecule dynamic measurements to be carried out biologically.

2.
Chemphyschem ; 24(22): e202200809, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37515550

RESUMEN

Core-shell nanostructures of silicon oxide@noble metal have drawn a lot of interest due to their distinctive characteristics and minimal toxicity with remarkable biocompatibility. Due to the unique property of localized surface plasmon resonance (LSPR), plasmonic nanoparticles are being used as surface-enhanced Raman scattering (SERS) based detection of pollutants and photothermal (PT) agents in cancer therapy. Herein, we demonstrate the synthesis of multifunctional silica core - Au nanostars shell (SiO2 @Au NSs) nanostructures using surfactant free aqueous phase method. The SERS performance of the as-synthesized anisotropic core-shell NSs was examined using Rhodamine B (RhB) dye as a Raman probe and resulted in strong enhancement factor of 1.37×106 . Furthermore, SiO2 @Au NSs were also employed for PT killing of breast cancer cells and they exhibited a concentration-dependent increase in the photothermal effect. The SiO2 @Au NSs show remarkable photothermal conversion efficiency of up to 72 % which is unprecedented. As an outcome, our synthesized NIR active SiO2 @Au NSs are of pivotal importance to have their dual applications in SERS enhancement and PT effect.

3.
Nanoscale ; 15(13): 6170-6178, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36917482

RESUMEN

The development of effective methods for the detection of protein misfolding is highly beneficial for early stage medical diagnosis and the prevention of many neurodegenerative diseases. Self-assembled plasmonic nanoantennas with precisely tunable nanogaps show extraordinary electromagnetic enhancement, generating extreme signal amplification imperative for the design of ultrasensitive biosensors for point of care applications. Herein, we report the custom arrangement of Au nanobipyramid (Au NBP) monomer and dimer nanoantennas engineered precisely based on the DNA origami technique. Furthermore, we demonstrate the SERS based detection of thioflavin T (ThT), a well-established marker for the detection of amyloid fibril formation, where G-Quadruplexes govern the site-specific attachment of ThT in the plasmonic hotspot. This is the first study for the SERS based detection of the ThT dye attached specifically using a G-Quadruplex complex. The spectroscopic signals of ThT were greatly enhanced due to the designed nanoantennas demonstrating their potential as superior SERS substrates. This study paves the way for boosting the design of next-generation diagnostic tools for the specific and precise detection of various target disease biomarkers using molecular probes.


Asunto(s)
Amiloide , G-Cuádruplex , Oro/química , Benzotiazoles , Proteínas Amiloidogénicas , ADN/química
5.
J Phys Chem Lett ; 12(33): 8141-8150, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34410129

RESUMEN

Engineering hotspots in surface-enhanced Raman spectroscopy (SERS) through precisely controlled assembly of plasmonic nanostructures capable of expanding intense field enhancement are highly desirable to enhance the potentiality of SERS as a label-free optical tool for single molecule detection. Inspired by DNA origami technique, we constructed plasmonic dimer nanoantennas with a tunable gap decorated with Ag-coated Au nanostars on origami. Herein, we demonstrate the single-molecule SERS enhancements of three dyes with emission in different spectral regions after incorporation of single dye molecules in between two nanostars. The enhancement factors (EFs) achieved in the range of 109-1010 for all the single dye molecules, under both resonant and nonresonant excitation conditions, would enable enhanced photostability during time-series measurement. We further successfully explored the potential of our designed nanoantennas to accommodate and detect a single thrombin protein molecule after selective placement in the wide nanogap of 10 nm. Our results suggest that such nanoantennas can serve as a broadband SERS enhancer and enable specific detection of target biological molecules with single-molecule sensitivity.


Asunto(s)
ADN/química , Nanopartículas del Metal/química , Proteínas/análisis , Espectrometría Raman/métodos , Oro/química , Plata/química
6.
Inorg Chem ; 60(16): 12355-12366, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34320803

RESUMEN

Altering the morphology of electrochemically active nanostructured materials could fundamentally influence their subsequent catalytic as well as oxygen evolution reaction (OER) performance. Enhanced OER activity for mixed-metal spinel-type sulfide (CuCo2S4) nanorods is generally done by blending the material that has high conductive supports together with those having a high surface volume ratio, for example, graphitic carbon nitrides (g-C3N4). Here, we report a noble-metal-free CuCo2S4 nanorod-based electrocatalyst appropriate for basic OER and neutral media, through a simple one-step thermal decomposition approach from its molecular precursors pyrrolidine dithiocarbamate-copper(II), Cu[PDTC]2, and pyrrolidine dithiocarbamate-cobalt(II), Co[PDTC]2 complexes. Transmission electron microscopy (TEM) images as well as X-ray diffraction (XRD) patterns suggest that as-synthesized CuCo2S4 nanorods are highly crystalline in nature and are connected on the g-C3N4 support. Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy studies affirm the successful formation of bonds that bridge (Co-N/S-C) at the interface of CuCo2S4 nanorods and g-C3N4. The kinetics of the reaction are expedited, as these bridging bonds function as an electron transport chain, empowering OER electrocatalytically under a low overpotential (242 mV) of a current density at 10 mA cm-2 under basic conditions, resulting in very high durability. Moreover, CuCo2S4/g-C3N4 composite nanorods exhibit a high catalytic activity of OER under a neutral medium at an overpotential of 406 mV and a current density of 10 mA cm-2.

7.
Front Chem ; 9: 772267, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004609

RESUMEN

The abundance of hotspots tuned via precise arrangement of coupled plasmonic nanostructures highly boost the surface-enhanced Raman scattering (SERS) signal enhancements, expanding their potential applicability to a diverse range of applications. Herein, nanoscale assembly of Ag coated Au nanostars in dimer and trimer configurations with tunable nanogap was achieved using programmable DNA origami technique. The resulting assemblies were then utilized for SERS-based ultra-sensitive detection of an important neurotransmitter, dopamine. The trimer assemblies were able to detect dopamine with picomolar sensitivity, and the assembled dimer structures achieved SERS sensitivity as low as 1 fM with a limit of detection of 0.225 fM. Overall, such coupled nanoarchitectures with superior plasmon tunability are promising to explore new avenues in biomedical diagnostic applications.

8.
Chemphyschem ; 22(2): 160-167, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33206442

RESUMEN

Early-stage detection of diseases caused by pathogens is a prerequisite for expedient patient care. Due to the limited signal-to-noise ratio, molecular diagnostics needs molecular signal amplification after recognition of the target molecule. In this present study, we demonstrate the design of plasmonically coupled bimetallic Ag coated Au nanostar dimers with controlled nanogap using rectangular DNA origami. We further report the utility of the designed nanostar dimer structures as efficient SERS substrate for the ultrasensitive and label-free detection of the pyocyanin molecule, which is a biomarker of the opportunistic pathogenic bacteria, Pseudomonas aeruginosa. The experimental results showed that the detection limit of pyocyanin with such nanoantenna based biosensor was 335 pM, which is much lower than the clinical range of detection. Thus, fast, sensitive and label-free detection of pyocyanin at ultralow concentration in an infected human body can pave a facile route for early stage warning for severe bacterial infections.


Asunto(s)
ADN/química , Nanopartículas del Metal/química , Piocianina/análisis , Biomarcadores/análisis , Técnicas Biosensibles/métodos , Oro/química , Límite de Detección , Conformación de Ácido Nucleico , Plata/química , Espectrometría Raman
9.
J Colloid Interface Sci ; 556: 140-146, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31442927

RESUMEN

We demonstrated the design of tiny bowls of copper-silver-gold (Cu-Ag-Au) alloy type noble trimetallic nanocrystals with a unique shape. All the structural characterizations confirm the presence of copper (Cu), silver (Ag), and gold (Au) in the trimetallic nanobowls. Finally, we examined the catalytic efficiency of trimetallic Cu-Ag-Au nanobowls for reduction of 4-nitrophenol to 4-aminophenol and found that these nanobowls were 14, 23 and 43-fold more active than each of the constituent metals, Au, Cu and Ag, respectively.

10.
RSC Adv ; 9(28): 15997-16006, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35521422

RESUMEN

White light emitting mixture (WLEM) was produced by controlled mixing of blue emitting silicon quantum dots (Si QDs) and orange red emitting gold nanoclusters (Au NCs). The chromaticity color co-ordinate of the WLEM studied using CIE (Commission Internationale del'Eclairage) diagram was found to be (0.33, 0.32), which was very close to that of perfect white light emitting source. The WLEM can also be achieved in the form of gel, solid and film with nearly the same CIE co-ordinates which enhances its utility as white light-emitting source in solid state devices. The reversible and thermo-responsive behaviour of the WLEM broadens its application in thermal sensing. Furthermore, the system was found to be showing fast, sensitive and selective detection of Hg2+ ions and thiol containing amino acid cysteine.

11.
J Am Chem Soc ; 139(48): 17639-17648, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29129049

RESUMEN

We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 1010 and 8 × 109, respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

12.
J Colloid Interface Sci ; 484: 263-269, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27619386

RESUMEN

In the present study we report the influence of shell thickness on fluorescence resonance energy transfer between Au/ZnO core-shell nanoparticles and Rhodamine 6G dye by steady-state and time-resolved spectroscopy and rectification behaviours. Au/ZnO core-shell nanoparticles with different shell thickness were synthesized in aqueous solution by chemically depositing zinc oxide on gold nanoparticles surface. A pronounced effect on the photoluminescence (PL) intensity and shortening of the decay time of the dye in presence of Au/ZnO core-shell nanoparticles is observed. The calculated energy transfer efficiencies from dye to Au/ZnO are 62.5%, 79.2%, 53.6% and 46.7% for 1.5nm, 3nm, 5nm and 8nm thickness of shell, respectively. Using FRET process, the calculated distances (r) are 117.8, 113.2Å 129.9Å and 136.7Å for 1.5nm, 3nm, 5nm and 8nm thick Au/ZnO core-shell nanoparticles, respectively. The distances (d) between the donor and acceptor are 71.0, 57.8, 76.2 and 81.6Å for 1.5nm, 3nm, 5nm and 8nm thick core-shell Au/ZnO nanoparticles, respectively, using the efficiency of surface energy transfer (SET). The current-voltage (I-V) curve of hybrid Au/ZnO clearly exhibits a rectifying nature and represents the n-type Schottky diode characteristics with a typical turn-on voltage of between 0.6 and 1.3V. It was found that the rectifying ratio increases from 20 to 90 with decreasing the thickness of the shell from 5nm to 3nm and with shell thickness of 8nm, electrical transport through the core-shell is similar to what is observed with pure ZnO samples nanoparticles. The results indicated that the Au/ZnO core-shell nanoparticles with an average shell thickness of 3nm exhibited the maximum energy transfer efficiencies (79.2%) and rectification (rectifying ratio 90).

13.
Nat Commun ; 5: 5356, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25370834

RESUMEN

The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments.

14.
Chemphyschem ; 13(17): 3989-96, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23060245

RESUMEN

We design well-defined metal-semiconductor nanostructures using thiol-functionalized CdTe quantum dots (QDs)/quantum rods (QRs) with bovine serum albumin (BSA) protein-conjugated Au nanoparticles (NPs)/nanorods (NRs) in aqueous solution. The main focus of this article is to address the impacts of size and shape on the photophysical properties, including radiative and nonradiative decay processes and energy transfers, of Au-CdTe hybrid nanostructures. The red shifting of the plasmonic band and the strong photoluminescence (PL) quenching reveal a strong interaction between plasmons and excitons in these Au-CdTe hybrid nanostructures. The PL quenching of CdTe QDs varies from 40 to 86 % by changing the size and shape of the Au NPs. The radiative as well as the nonradiative decay rates of the CdTe QDs/QRs are found to be affected in the presence of both Au NPs and NRs. A significant change in the nonradiative decay rate from 4.72×10(6) to 3.92×10(10) s(-1) is obtained for Au NR-conjugated CdTe QDs. It is seen that the sizes and shapes of the Au NPs have a pronounced effect on the distance-dependent energy transfer. Such metal-semiconductor hybrid nanostructures should have great potentials for nonlinear optical properties, photovoltaic devices, and chemical sensors.

15.
J Fluoresc ; 22(1): 303-10, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21909637

RESUMEN

Here, we study the formation of H-type aggregation of coumarin 153 (C153) dye molecule in presence of Au nanoparticles and the removal of dye aggregation in presence of γ-cyclodextrin (CD) due to confinement of dye molecules inside the nanocavity of γ-cyclodextrin (CD) using steady state and time resolved spectroscopy. Blue shifting of absorption band, photoluminescence (PL) band and the enhancement of decay time of C153 dye confirm the formation of H-aggregation. It is found that the concentrations of γ-CD and Au nanoparticles play an important role on H-type aggregation of dye. The rotational relaxation time of free C153 is 0.113 ns and the average relaxation time of C153 dye are 0.275 ns and 0.425 ns for 2 mM and 5 mM γ-CD confined systems, respectively, indicating the anisotropy increases due to confinement of dye. An associated type anisotropy decay of C153 dye is found at 20 mM concentration of CD may be due to formation of nanotubular aggregates of γ-CD.


Asunto(s)
Colorantes/química , Cumarinas/química , Oro/química , Nanopartículas del Metal/química , gamma-Ciclodextrinas/química , Espectrometría de Fluorescencia
16.
J Nanosci Nanotechnol ; 8(3): 1238-43, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18468131

RESUMEN

We demonstrated simple solution based methods for preparing CdS nanostructure materials with distinct and well-defined morphologies, including spherical, rod and tripod/tetrapod by varying the solvents. It is also found that solvent plays an important role on tuning the crystal structure of nanocrystals, which is an important observation in this study. The mechanism related to crystal phase control is proposed and discussed. Our results reveal that the luminescence properties of CdS nanostructures depend on the size not on the shape of nanocrystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...