Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Elife ; 122023 07 04.
Article En | MEDLINE | ID: mdl-37402178

Aging is a major risk factor for cognitive impairment. Aerobic exercise benefits brain function and may promote cognitive health in older adults. However, underlying biological mechanisms across cerebral gray and white matter are poorly understood. Selective vulnerability of the white matter to small vessel disease and a link between white matter health and cognitive function suggests a potential role for responses in deep cerebral microcirculation. Here, we tested whether aerobic exercise modulates cerebral microcirculatory changes induced by aging. To this end, we carried out a comprehensive quantitative examination of changes in cerebral microvascular physiology in cortical gray and subcortical white matter in mice (3-6 vs. 19-21 months old), and asked whether and how exercise may rescue age-induced deficits. In the sedentary group, aging caused a more severe decline in cerebral microvascular perfusion and oxygenation in deep (infragranular) cortical layers and subcortical white matter compared with superficial (supragranular) cortical layers. Five months of voluntary aerobic exercise partly renormalized microvascular perfusion and oxygenation in aged mice in a depth-dependent manner, and brought these spatial distributions closer to those of young adult sedentary mice. These microcirculatory effects were accompanied by an improvement in cognitive function. Our work demonstrates the selective vulnerability of the deep cortex and subcortical white matter to aging-induced decline in microcirculation, as well as the responsiveness of these regions to aerobic exercise.


Cognitive Dysfunction , White Matter , Animals , Mice , Microcirculation , Aging/physiology , Cognitive Dysfunction/prevention & control , White Matter/physiology , Cognition , Cerebral Cortex
2.
Neurophotonics ; 10(3): 035001, 2023 Jul.
Article En | MEDLINE | ID: mdl-37323511

Significance: It has been hypothesized that abnormal microcirculation in the retina might predict the risk of ischemic damages in the brain. Direct comparison between the retinal and the cerebral microcirculation using similar animal preparation and under similar experimental conditions would help test this hypothesis. Aim: We investigated capillary red-blood-cell (RBC) flux changes under controlled conditions and bilateral-carotid-artery-stenosis (BCAS)-induced hypoperfusion, and then compared them with our previous measurements performed in the brain. Approach: We measured capillary RBC flux in mouse retina with two-photon microscopy using a fluorescence-labeled RBC-passage approach. Key physiological parameters were monitored during experiments to ensure stable physiology. Results: We found that under the controlled conditions, capillary RBC flux in the retina was much higher than in the brain (i.e., cerebral cortical gray matter and subcortical white matter), and that BCAS induced a much larger decrease in capillary RBC flux in the retina than in the brain. Conclusions: We demonstrated a two-photon microscopy-based technique to efficiently measure capillary RBC flux in the retina. Since cerebral subcortical white matter often exhibits early pathological developments due to global hypoperfusion, our results suggest that retinal microcirculation may be utilized as an early marker of brain diseases involving global hypoperfusion.

3.
bioRxiv ; 2023 Feb 13.
Article En | MEDLINE | ID: mdl-36824939

Aging is a major risk factor for cognitive impairment. Aerobic exercise benefits brain function and may promote cognitive health in older adults. However, underlying biological mechanisms across cerebral gray and white matter are poorly understood. Selective vulnerability of the white matter to small vessel disease and a link between white matter health and cognitive function suggests a potential role for responses in deep cerebral microcirculation. Here, we tested whether aerobic exercise modulates cerebral microcirculatory changes induced by aging. To this end, we carried out a comprehensive quantitative examination of changes in cerebral microvascular physiology in cortical gray and subcortical white matter in mice (3-6 vs. 19-21 months old), and asked whether and how exercise may rescue age-induced deficits. In the sedentary group, aging caused a more severe decline in cerebral microvascular perfusion and oxygenation in deep (infragranular) cortical layers and subcortical white matter compared with superficial (supragranular) cortical layers. Five months of voluntary aerobic exercise partly renormalized microvascular perfusion and oxygenation in aged mice in a depth-dependent manner, and brought these spatial distributions closer to those of young adult sedentary mice. These microcirculatory effects were accompanied by an improvement in cognitive function. Our work demonstrates the selective vulnerability of the deep cortex and subcortical white matter to aging-induced decline in microcirculation, as well as the responsiveness of these regions to aerobic exercise.

4.
Geroscience ; 45(3): 1491-1510, 2023 06.
Article En | MEDLINE | ID: mdl-36792820

Whole-brain irradiation (WBI, also known as whole-brain radiation therapy) is a mainstay treatment modality for patients with multiple brain metastases. It is also used as a prophylactic treatment for microscopic tumors that cannot be detected by magnetic resonance imaging. WBI induces a progressive cognitive decline in ~ 50% of the patients surviving over 6 months, significantly compromising the quality of life. There is increasing preclinical evidence that radiation-induced injury to the cerebral microvasculature and accelerated neurovascular senescence plays a central role in this side effect of WBI. To better understand this side effect, male C57BL/6 mice were first subjected to a clinically relevant protocol of fractionated WBI (5 Gy, two doses per week, for 4 weeks). Nine months post the WBI treatment, we applied two-photon microscopy and Doppler optical coherence tomography to measure capillary red-blood-cell (RBC) flux, capillary morphology, and microvascular oxygen partial pressure (PO2) in the cerebral somatosensory cortex in the awake, head-restrained, WPI-treated mice and their age-matched controls, through a cover-glass-sealed chronic cranial window. Thanks to the extended penetration depth with the fluorophore - Alexa680, measurements of capillary blood flow properties (e.g., RBC flux, speed, and linear density) in the cerebral subcortical white matter were enabled. We found that the WBI-treated mice exhibited a significantly decreased capillary RBC flux in the white matter. WBI also caused a significant reduction in capillary diameter, as well as a large (although insignificant) reduction in segment density at the deeper cortical layers (e.g., 600-700 µm), while the other morphological properties (e.g., segment length and tortuosity) were not obviously affected. In addition, we found that PO2 measured in the arterioles and venules, as well as the calculated oxygen saturation and oxygen extraction fraction, were not obviously affected by WBI. Lastly, WBI was associated with a significant increase in the erythrocyte-associated transients of PO2, while the changes of other cerebral capillary PO2 properties (e.g., capillary mean-PO2, RBC-PO2, and InterRBC-PO2) were not significant. Collectively, our findings support the notion that WBI results in persistent cerebral white matter microvascular impairment, which likely contributes to the WBI-induced brain injury and cognitive decline. Further studies are warranted to assess the WBI-induced changes in brain tissue oxygenation and malfunction of the white matter microvasculature as well.


Brain Neoplasms , Cognitive Dysfunction , White Matter , Mice , Male , Animals , Microcirculation , White Matter/diagnostic imaging , Microscopy , Cerebrovascular Circulation/physiology , Tomography, Optical Coherence , Quality of Life , Cranial Irradiation , Mice, Inbred C57BL , Brain/blood supply , Disease Models, Animal , Oxygen
5.
PLoS Biol ; 20(10): e3001440, 2022 10.
Article En | MEDLINE | ID: mdl-36301995

The cerebral cortex is organized in cortical layers that differ in their cellular density, composition, and wiring. Cortical laminar architecture is also readily revealed by staining for cytochrome oxidase-the last enzyme in the respiratory electron transport chain located in the inner mitochondrial membrane. It has been hypothesized that a high-density band of cytochrome oxidase in cortical layer IV reflects higher oxygen consumption under baseline (unstimulated) conditions. Here, we tested the above hypothesis using direct measurements of the partial pressure of O2 (pO2) in cortical tissue by means of 2-photon phosphorescence lifetime microscopy (2PLM). We revisited our previously developed method for extraction of the cerebral metabolic rate of O2 (CMRO2) based on 2-photon pO2 measurements around diving arterioles and applied this method to estimate baseline CMRO2 in awake mice across cortical layers. To our surprise, our results revealed a decrease in baseline CMRO2 from layer I to layer IV. This decrease of CMRO2 with cortical depth was paralleled by an increase in tissue oxygenation. Higher baseline oxygenation and cytochrome density in layer IV may serve as an O2 reserve during surges of neuronal activity or certain metabolically active brain states rather than reflecting baseline energy needs. Our study provides to our knowledge the first quantification of microscopically resolved CMRO2 across cortical layers as a step towards better understanding of brain energy metabolism.


Electron Transport Complex IV , Oxygen Consumption , Animals , Mice , Electron Transport Complex IV/metabolism , Oxygen Consumption/physiology , Oxygen/metabolism , Cerebral Cortex/metabolism , Brain/physiology , Cerebrovascular Circulation
...