Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Cancer Res Commun ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302104

RESUMEN

Non-small cell lung cancer (NSCLC) cells with oncogenic mutant p53 alleles (Onc-p53) exhibit significantly higher levels of proteasome activity, indicating that Onc-p53 induces proteotoxic stress which may be leveraged as a therapeutic vulnerability. Proteasome inhibitors (PIs) are most active in cells under proteotoxic stress, so we investigated whether PIs exhibit preferential cytotoxicity in Onc-p53 NSCLC cells. Indeed, BTZ and other PIs exhibited IC50 values 6-15-fold lower in Onc-p53 cells vs. wild-type (WT) p53 cells. BTZ cytotoxic effects in Onc-p53 cells were abrogated by antioxidants such as N-acetyl L-cysteine, indicating that oxidative stress is the critical driver of BTZ-dependent cytotoxic effects in Onc-p53 cells. Importantly, we observed oxidative stress-dependent transcriptional induction of the pro-apoptotic BH3-only protein NOXA leading to cleavage of caspase-3, consistent with an apoptotic mechanism of cell death in Onc-p53 but not in WT p53 cells treated with BTZ. BTZ-generated oxidative stress was linked to nuclear translocation of NRF2 and transcriptional activation of ATF3, which in turn was required for NOXA induction. Validating BTZ's translational potential in Onc-p53 NSCLC cells, BTZ and the BH3-mimetic navitoclax were synergistically cytotoxic in Onc-p53 but not WT p53 cells in vitro, and BTZ effectively limited growth of Onc-p53 NSCLC xenografts when combined with navitoclax and carboplatin (a standard of care chemotherapeutic in NSCLC) in vivo. Our data therefore support further investigation of the therapeutic utility of PIs combined with BH3-mimetics and chemotherapy in Onc-p53 human NSCLC as a novel therapeutic strategy.

2.
Res Sq ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38883782

RESUMEN

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

3.
bioRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712286

RESUMEN

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein. and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

4.
Endocrinology ; 165(6)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38713636

RESUMEN

Prolactin and its receptor (PRLr) in humans are significantly involved in breast cancer pathogenesis. The intermediate form of human PRLr (hPRLrI) is produced by alternative splicing and has a novel 13 amino acid tail ("I-tail") gain. hPRLrI induces significant proliferation and anchorage-independent growth of normal mammary epithelia in vitro when coexpressed with the long form hPRLr (hPRLrL). hPRLrL and hPRLrI coexpression is necessary to induce the transformation of mammary epithelia in vivo. The I-tail is associated with the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Treatment with the neural precursor cell expressed developmentally downregulated protein 8-activating enzyme inhibitor pevonedistat resulted in increased hPRLrL and the death of breast cancer cells. The goal of this study was to determine the function of the hPRLrI I-tail in hPRLrL/hPRLrI-mediated mammary transformation. hPRLrL/hPRLrI and hPRLrL/hPRLrIΔ13 (I-tail removal mutant) were delivered to MCF10AT cells. Cell proliferation was decreased when hPRLrI I-tail was removed. I-tail deletion decreased anchorage-independent growth and attenuated cell migration. The I-tail was involved in Ras/MAPK signaling but not PI3K/Akt signaling pathway as shown by western blot. I-tail removal resulted in decreased hPRLrI stability. RNA-sequencing data revealed that I-tail removal resulted in differential gene expression induced by prolactin. Ingenuity Pathway Analysis revealed that the activity of ERK was attenuated. Treatment of breast cancer cells with ERK1/2 inhibitor ulixertinib resulted in decreased colony-forming ability and less proliferation. These studies suggest that the hPRLrI I-tail contributed to breast oncogenesis and may be a promising target for the development of new breast cancer therapies.


Asunto(s)
Neoplasias de la Mama , Receptores de Prolactina , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Prolactina/metabolismo , Prolactina/farmacología , Proteínas ras/metabolismo , Proteínas ras/genética , Receptores de Prolactina/metabolismo , Receptores de Prolactina/genética , Transducción de Señal/genética
5.
J Cell Biol ; 223(6)2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38656405

RESUMEN

Cells exposed to proteotoxic stress invoke adaptive responses aimed at restoring proteostasis. Our previous studies have established a firm role for the transcription factor Nuclear factor-erythroid derived-2-related factor-1 (Nrf1) in responding to proteotoxic stress elicited by inhibition of cellular proteasome. Following proteasome inhibition, Nrf1 mediates new proteasome synthesis, thus enabling the cells to mitigate the proteotoxic stress. Here, we report that under similar circumstances, multiple components of the autophagy-lysosomal pathway (ALP) were transcriptionally upregulated in an Nrf1-dependent fashion, thus providing the cells with an additional route to cope with proteasome insufficiency. In response to proteasome inhibitors, Nrf1-deficient cells displayed profound defects in invoking autophagy and clearance of aggresomes. This phenomenon was also recapitulated in NGLY1 knockout cells, where Nrf1 is known to be non-functional. Conversely, overexpression of Nrf1 induced ALP genes and endowed the cells with an increased capacity to clear aggresomes. Overall, our results significantly expand the role of Nrf1 in shaping the cellular response to proteotoxic stress.


Asunto(s)
Autofagia , Factor 1 Relacionado con NF-E2 , Estrés Proteotóxico , Animales , Humanos , Ratones , Autofagia/genética , Lisosomas/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , Factor 1 Relacionado con NF-E2/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/farmacología , Proteostasis , Estrés Fisiológico
6.
Breast Cancer Res ; 26(1): 56, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553763

RESUMEN

Patient-derived organoid models of estrogen receptor-positive (ER+) breast cancer would provide a much-needed tool to understand drug resistance and disease progression better. However, the establishment and long-term maintenance of ER expression, function, and response in vitro remains a significant challenge. Here, we report the development of an ER+ breast tumor organoid medium (BTOM-ER) that conserves ER expression, estrogen responsiveness, and dependence, as well as sensitivity to endocrine therapy of ER+ patient-derived xenograft organoids (PDXO). Our findings demonstrate the utility of subtype-specific culture conditions that better mimic the characteristics of the breast epithelial biology and microenvironment, providing a powerful platform for investigating therapy response and disease progression of ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Receptores de Estrógenos/metabolismo , Estrógenos , Organoides/metabolismo , Progresión de la Enfermedad , Microambiente Tumoral
7.
Mol Cell ; 84(7): 1304-1320.e16, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38382526

RESUMEN

Cullin-RING ligases (CRLs) ubiquitylate specific substrates selected from other cellular proteins. Substrate discrimination and ubiquitin transferase activity were thought to be strictly separated. Substrates are recognized by substrate receptors, such as Fbox or BCbox proteins. Meanwhile, CRLs employ assorted ubiquitin-carrying enzymes (UCEs, which are a collection of E2 and ARIH-family E3s) specialized for either initial substrate ubiquitylation (priming) or forging poly-ubiquitin chains. We discovered specific human CRL-UCE pairings governing substrate priming. The results reveal pairing of CUL2-based CRLs and UBE2R-family UCEs in cells, essential for efficient PROTAC-induced neo-substrate degradation. Despite UBE2R2's intrinsic programming to catalyze poly-ubiquitylation, CUL2 employs this UCE for geometrically precise PROTAC-dependent ubiquitylation of a neo-substrate and for rapid priming of substrates recruited to diverse receptors. Cryo-EM structures illuminate how CUL2-based CRLs engage UBE2R2 to activate substrate ubiquitylation. Thus, pairing with a specific UCE overcomes E2 catalytic limitations to drive substrate ubiquitylation and targeted protein degradation.


Asunto(s)
Proteínas Cullin , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Poliubiquitina/metabolismo , Proteínas Portadoras/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38110241

RESUMEN

During the last decade, biomedical research has experienced a resurgence in the use of three-dimensional culture models for studies of normal and cancer biology. This resurgence has been driven by the development of models in which primary cells are grown in tissue-mimicking media and extracellular matrices to create organoid or organotypic cultures that more faithfully replicate the complex architecture and physiology of normal tissues and tumors. In addition, patient-derived tumor organoids preserve the three-dimensional organization and characteristics of the patient tumors ex vivo, becoming excellent preclinical models to supplement studies of tumor xenografts transplanted into immunocompromised mice. In this perspective, we provide an overview of how organoids are being used to investigate normal mammary biology and as preclinical models of breast cancer and discuss improvements that would enhance their utility and relevance to the field.


Asunto(s)
Neoplasias de la Mama , Organoides , Neoplasias de la Mama/patología , Humanos , Femenino , Animales , Ratones , Glándulas Mamarias Humanas/patología
10.
Cell ; 186(25): 5569-5586.e21, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38016469

RESUMEN

CD4+ T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4+ T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4+ antigen discovery platform. This platform seamlessly integrates the endogenous HLA-II antigen-processing machinery in synthetic antigen-presenting cells and TCR signaling in T cells, enabling the simultaneous screening of multiple HLAs and TCRs. Leveraging genome-scale human, virome, and epitope mutagenesis libraries, TScan-II facilitates de novo antigen discovery and deep exploration of TCR specificity. We demonstrate TScan-II's potential for basic and translational research by identifying a non-canonical antigen for a cancer-reactive CD4+ T cell clone. Additionally, we identified two antigens for clonally expanded CD4+ T cells in Sjögren's disease, which bind distinct HLAs and are expressed in HLA-II-positive ductal cells within affected salivary glands.


Asunto(s)
Linfocitos T CD4-Positivos , Epítopos de Linfocito T , Humanos , Células Presentadoras de Antígenos , Antígenos CD4/metabolismo , Antígenos HLA/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Línea Celular , Genoma Humano
11.
Res Sq ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37886440

RESUMEN

Patient-derived organoid models of estrogen receptor-positive (ER+) breast cancer would provide a much-needed tool to understand drug resistance and disease progression better. However, the establishment and long-term maintenance of ER expression, function, and response in vitro remains a significant challenge. Here, we report the development of an ER+ breast tumor organoid medium (BTOM-ER) that conserves ER expression, estrogen responsiveness, and dependence, as well as sensitivity to endocrine therapy of ER+ patient-derived xenograft organoids (PDXO). Our findings demonstrate the utility of subtype-specific culture conditions that better mimic the characteristics of the breast epithelial biology and microenvironment, providing a powerful platform for investigating therapy response and disease progression of ER+ breast cancer.

12.
Sci Rep ; 13(1): 15843, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739987

RESUMEN

Proteasomes are multi-subunit complexes that specialize in protein degradation. Cancer cells exhibit a heightened dependence on proteasome activity, presumably to support their enhanced proliferation and other cancer-related characteristics. Here, a systematic analysis of TCGA breast cancer datasets revealed that proteasome subunit transcript levels are elevated in all intrinsic subtypes (luminal, HER2-enriched, and basal-like/triple-negative) when compared to normal breast tissue. Although these observations suggest a pan-breast cancer utility for proteasome inhibitors, our further experiments with breast cancer cell lines and patient-derived xenografts (PDX) pointed to triple-negative breast cancer (TNBC) as the most sensitive subtype to proteasome inhibition. Finally, using TNBC cells, we extended our studies to in vivo xenograft experiments. Our previous work has firmly established a cytoprotective role for the transcription factor NRF1 via its ability to upregulate proteasome genes in response to proteasome inhibition. In further support of this notion, we show here that NRF1 depletion significantly reduced tumor burden in an MDA-MB-231 TNBC xenograft mouse model treated with carfilzomib. Taken together, our results point to TNBC as a particularly vulnerable breast cancer subtype to proteasome inhibition and provide a proof-of-principle for targeting NRF1 as a viable means to increase the efficacy of proteasome inhibitors in TNBC tumors.


Asunto(s)
Factor 1 Relacionado con NF-E2 , Complejo de la Endopetidasa Proteasomal , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Citoplasma , Modelos Animales de Enfermedad , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/farmacología , Proteolisis , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Factor 1 Relacionado con NF-E2/metabolismo
13.
J Am Chem Soc ; 145(33): 18560-18567, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578470

RESUMEN

Polymers constructed from copolymerizations of carbohydrates with C1 feedstocks are promising targets that provide transformation of sustainably sourced building blocks into next-generation, environmentally degradable plastic materials. In this work, the initial intention was to expand beyond polycarbonates prepared by the copolymerization of oxetanes derived from d-xylose with CO2 and incorporate sulfur atoms through the establishment of monothiocarbonates that would provide the ability to modulate the backbone compositions and result in unique effects upon the chemical, physical, and mechanical properties. Therefore, the syntheses of poly(1,2-O-isopropylidene-α-d-xylofuranose monothiocarbonate)s were investigated by ring-opening copolymerizations of 3,5-anhydro-1,2-O-isopropylidene-α-d-xylofuranose with carbonyl sulfide (COS) facilitated by (salen)CrCl/cocatalyst systems. Unexpectedly, when copolymerization temperatures exceeded 40 °C, oxygen/sulfur exchange reactions occurred, causing in situ dynamic backbone restructuring through a series of inter-related and complex mechanistic pathways that transformed monothiocarbonate monomeric repeating units into carbonate and thioether dimeric repeating units. These backbone structural compositional transformations were investigated through a combination of Fourier transform infrared and nuclear magnetic resonance spectroscopic techniques and were demonstrated to be easily tuned via temperature and catalyst/cocatalyst stoichiometries. Furthermore, the regiochemistries of these d-xylose-based sulfur-containing polymers revealed that monothiocarbonate monomeric repeating units had a head-to-tail connectivity, while the carbonate and thioether dimeric repeating units had dual head-to-head and tail-to-tail connectivities. These sulfur-containing polymers exhibited enhanced thermal stabilities compared to their oxygen-containing polycarbonate analogues and revealed variations in the effects upon glass transition temperatures, demonstrating the effect of sulfur incorporation in the polymer backbone. These findings contribute to the advancement of sustainable polymer production by using feedstocks of natural origin coupled with COS.

14.
Biochem Biophys Rep ; 35: 101518, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37534323

RESUMEN

Single-stranded DNA (ssDNA) generated during DNA replication, recombination and damage repair reactions is an important intermediate and ssDNA-binding proteins that binds these intermediates coordinate various DNA metabolic processes. Mechanistic details of these ssDNA-dependent processes can be explored by monitoring the generation and consumption of ssDNA in real time. In this work, a fluorescein-labeled gp32-based sensor was employed to continuously monitor various aspects of ssDNA-dependent DNA replication and recombination processes in real time. The gp32 protein probe displayed high sensitivity and specificity to a variety of ssDNA-dependent processes of T4 phage. Several applications of the probe are illustrated here: the solution dynamics of ssDNA-binding protein, protein-protein and protein-DNA interactions involving gp32 protein and its mode of interaction, ssDNA translocation and protein displacement activities of helicases, primer extension activity of DNA polymerase holoenzyme and nucleoprotein filament formation during DNA recombination. The assay has identified new protein-protein interactions of gp32 during T4 replication and recombination. The fluorescent probe described here can thus be used as a universal probe for monitoring in real time various ssDNA-dependent processes, which is based on a well-characterized and easy-to-express bacteriophage T4 gene 32 protein, gp32.

15.
Am J Pathol ; 193(10): 1455-1467, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422149

RESUMEN

The short-chain fatty acid butyrate, produced from fermentable carbohydrates by gut microbiota in the colon, has multiple beneficial effects on human health. At the intestinal level, butyrate regulates metabolism, helps in the transepithelial transport of fluids, inhibits inflammation, and induces the epithelial defense barrier. The liver receives a large amount of short-chain fatty acids via the blood flowing from the gut via the portal vein. Butyrate helps prevent nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, inflammation, cancer, and liver injuries. It ameliorates metabolic diseases, including insulin resistance and obesity, and plays a direct role in preventing fatty liver diseases. Butyrate has different mechanisms of action, including strong regulatory effects on the expression of many genes by inhibiting the histone deacetylases and modulating cellular metabolism. The present review highlights the wide range of beneficial therapeutic and unfavorable adverse effects of butyrate, with a high potential for clinically important uses in several liver diseases.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Humanos , Butiratos/metabolismo , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/uso terapéutico , Inflamación/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
16.
Front Cardiovasc Med ; 10: 1055454, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522075

RESUMEN

Background: Asian Indians are at higher risk of cardiometabolic disease compared to other ethnic groups, and the age of onset is typically younger. Cardiac structure and function are poorly characterized in this ethnic group. In this study, we describe image-acquisition methods and the reproducibility of measurements and detailed echocardiography characteristics in two large Indian population-based cohorts (the New Delhi and Vellore Birth Cohorts) from India. Methods: The IndEcho study captured transthoracic echocardiographic measurements of cardiac structure and function from 2,322 men and women aged 43-50 years. M-mode measurements in the parasternal long axis (PLAX) and 2-dimensional (2D) short axis recordings at the mitral valve, mid-papillary and apical level were recorded. Apical 2D recordings of two- three- and four-chamber (2C, 3C and 4C) views and Doppler images (colour, pulsed and continuous) were recorded in cine-loop format. Left ventricular (LV) mass, LV hypertrophy, and indices of LV systolic and diastolic function were derived. Results: Echocardiographic measurements showed good/excellent technical reproducibility. Hetero-geneity across sites, sex and rural/urban differences in cardiac structure and function were observed. Overall, this cohort of South Asian Indians had smaller LV mass and normal systolic and diastolic function when compared with published data on other Asian Indians and the West, (LV mass indexed for body surface area: Delhi men: 68 g/m2, women 63.9; Vellore men: 65.8, women 61.6) but were within ethnic-specific reference ranges. The higher prevalence of obesity, diabetes and hypertension is reflected by the higher proportion of LV remodelling and lesser hypertrophy. Conclusions: Our study adds to scarce population-based echocardiographic data for mid-life Asian Indians. Compared to published literature on other ethnic groups, the Asian Indian heart is characterised by smaller cardiac dimensions and normal range systolic and diastolic function on a background of a high prevalence of hypertension, diabetes and cardiac disease at a relatively young age. This data will form the basis for further analyses of lifecourse, metabolic and body composition predictors of cardiac structure and function, and echocardiographic predictors of future mortality. ISRCTN registration number: 13432279.

17.
Indian J Dermatol ; 68(2): 195-199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275810

RESUMEN

Background: Various diagnostic tools are used to assess cutaneous psoriasis, but most of it were subjective. Sympathetic skin response (SSR), skin PH and temperature objectively measure the skin barrier functions that could aid clinicians to evaluate accurately and predict skin disease incidence even before the onset of clinical symptoms. Aim and Objectives: The study's objective was to assess the utility of cutaneous parameters (skin temperature and pH) and SSRs influencing psoriatic patients' diagnosis management and treatment compared to controls. Materials and Methods: A total of 40 healthy participants and 40 psoriasis patients aged 18 to 65 years were recruited for this study. SSR, skin temperature and pH were assessed. The psoriasis disability index (PDI) was recorded from all the patients. Data analysis was carried out using SPSS version 20.0. Results: The results shows significantly increased skin temperature, prolonged SSR latency (bilaterally) and decreased SSR amplitude (bilaterally) among patients affected with psoriasis compared to control subjects. There is a positive correlation between SSR latency with PDI and a negative correlation between SSR amplitude and PDI in psoriasis patients. Conclusion: SSR reveals sympathetic sudomotor dysfunction and increased skin temperature in psoriasis. Furthermore, there is a link between increased SSR latency and PDI, which shows that local nervous system impairment significantly contributes to the inflammatory process in psoriasis. Thus, SSR can be used as a complementary tool for the early identification and assessment of epidermal barrier integrity in psoriasis patients, along with the clinician's standard protocols.

18.
BMC Pregnancy Childbirth ; 23(1): 374, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226126

RESUMEN

BACKGROUND: A barrier to achieving first trimester antenatal care (ANC) attendance in many countries has been the widespread cultural practice of not discussing pregnancies in the early stages. Motivations for concealing pregnancy bear further study, as the interventions necessary to encourage early ANC attendance may be more complicated than targeting infrastructural barriers to ANC attendance such as transportation, time, and cost. METHODS: Five focus groups with a total of 30 married, pregnant women were conducted to assess the feasibility of conducting a randomised controlled trial to evaluate the effectiveness of early initiation of physical activity and/or yoghurt consumption in reducing Gestational Diabetes Mellitus in pregnant women in The Gambia. Focus group transcripts were coded through a thematic analysis approach, assessing themes as they arose in relation to failure to attend early ANC. RESULTS: Two reasons for the concealment of pregnancies in the first trimester or ahead of a pregnancy's obvious visibility to others were given by focus group participants. These were 'pregnancy outside of marriage' and 'evil spirits and miscarriage.' Concealment on both grounds was motivated through specific worries and fears. In the case of a pregnancy outside of marriage, this was worry over social stigma and shame. Evil spirits were widely considered to be a cause of early miscarriage, and as such, women may choose to conceal their pregnancies in the early stages as a form of protection. CONCLUSION: Women's lived experiences of evil spirits have been under-explored in qualitative health research as they relate specifically to women's access to early antenatal care. Better understanding of how such sprits are experienced and why some women perceive themselves as vulnerable to related spiritual attacks may help healthcare workers or community health workers to identify in a timely manner the women most likely to fear such situations and spirits and subsequently conceal their pregnancies.


Asunto(s)
Aborto Espontáneo , Motivación , Femenino , Humanos , Embarazo , Gambia , Cognición , Agentes Comunitarios de Salud
19.
medRxiv ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36993200

RESUMEN

Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy earlier. Analyzing circulating extracellular vesicles (cEVs) using 'liquid biopsies' offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12 and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2 and ANKAR were associated with metastasis, and those with CRP, RALB and CD55 correlated with poor clinical prognosis. Finally, we validated a 7-EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.

20.
Chem Sci ; 14(7): 1696-1708, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36819875

RESUMEN

One restriction for biohybrid photovoltaics is the limited conversion of green light by most natural photoactive components. The present study aims to fill the green gap of photosystem I (PSI) with covalently linked fluorophores, ATTO 590 and ATTO 532. Photobiocathodes are prepared by combining a 20 µm thick 3D indium tin oxide (ITO) structure with these constructs to enhance the photocurrent density compared to setups based on native PSI. To this end, two electron transfer mechanisms, with and without a mediator, are studied to evaluate differences in the behavior of the constructs. Wavelength-dependent measurements confirm the influence of the additional fluorophores on the photocurrent. The performance is significantly increased for all modifications compared to native PSI when cytochrome c is present as a redox-mediator. The photocurrent almost doubles from -32.5 to up to -60.9 µA cm-2. For mediator-less photobiocathodes, interestingly, drastic differences appear between the constructs made with various dyes. While the turnover frequency (TOF) is doubled to 10 e-/PSI/s for PSI-ATTO590 on the 3D ITO compared to the reference specimen, the photocurrents are slightly smaller since the PSI-ATTO590 coverage is low. In contrast, the PSI-ATTO532 construct performs exceptionally well. The TOF increases to 31 e-/PSI/s, and a photocurrent of -47.0 µA cm-2 is obtained. This current is a factor of 6 better than the reference made with native PSI in direct electron transfer mode and sets a new record for mediator-free photobioelectrodes combining 3D electrode structures and light-converting biocomponents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA